Biomedical Engineering (BME) Courses
BME 1002. Introduction to Biomedical Engineering. (2-0) 2 Credit Hours.
Prerequisite: A grade of "C-" or better, or concurrent enrollment in BIO 1203, BIO 1201, and MAT 1213 (or MAT 1214 in previous catalogs). This course is an introduction to the interdisciplinary field of biomedical engineering. Topics covered include core biomedical engineering areas, fundamental concepts, ethics, professionalism, careers, and technical skills. Generally offered: Spring. Course Fee: LRE1 $20; STSE $25.
BME 2103. Physiology for Biomedical Engineering. (3-1) 3 Credit Hours.
Prerequisite: Major in Biomedical Engineering and a grade of "C-" or better in BIO 1203 and BIO 1201; completion of or concurrent enrollment in MAT 1213 (or MAT 1214 in previous catalogs). Fundamental principles of general and organ systems physiology, including composition and concentration of cellular and other body fluids, types of transport (e.g., diffusion, membrane transporters), energy (e.g., thermodynamics, metabolism), enzymes, feedback control, and membrane potentials with engineering applications and mathematical modeling. This course includes a 3-hour lecture and a 1-hour recitation. (Same as CME 2113. Credit cannot be earned for both BME 2103 and CME 2113.) Generally offered: Fall. Course Fee: LRE1 $25; STSE $30.
BME 2203. Biomechanics I. (3-1) 3 Credit Hours.
Prerequisite: Major in Biomedical Engineering and a grade of "C-" or better in EGR 2302 or EGR 2323 and PHY 1943; completion of or concurrent enrollment in BME 3211 and EGR 3423. Introduction to fundamental engineering mechanics with a focus on the human body. This course includes a 3-hour lecture and a 1-hour recitation. (Same as CME 2803. Credit cannot be earned for both BME 2203 and CME 2803.). Course Fee: LRE1 $25; STSE $30; DL01 $75.
BME 3003. Biomaterials I. (3-0) 3 Credit Hours.
Prerequisites: A grade of "C-" or better in BME 1002 and CHE 1113.
Introduction to the fundamental science of natural and synthetic biomaterials used for repairing human tissues and organs. Topics include crystal structures, phase diagrams, and properties of materials. (Formerly listed as BME 2403 in previous catalogs. Credit cannot be earned for both BME 3003 and CME 3003.) This course has Differential Tuition. Course fee: DL01 $75.
BME 3013. Clinical Internship in Biomedical Engineering. (0-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in BME 3113 and BME 3121. This course will introduce students to the clinical environment, interacting with clinicians on current clinical problems, and engineering approaches.
Generally offered: Summer. This course has Differential Tuition.
BME 3023. Biomedical Engineering Technology and Product Development. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in BME 3013 and BME 3303.
This course will introduce students to current biomedical technologies and product development. (Formerly BME 3022. Credit cannot be earned for both BME 3023 and BME 3022.) This course has Differential Tuition. Course fee: DL01 $75.
BME 3033. Biomedical Engineering Internship. (0-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in BME 3023. Internship with a biomedical industry. May be repeated for credit, but no more than 3 semester credit hours will apply to a bachelor’s degree. This course has Differential Tuition.
BME 3041. Biomedical Engineering Research. (0-0) 1 Credit Hour.
Prerequisite: Consent of instructor. Advanced laboratory practice and introduction to biomedical engineering research. This course may be counted as one of the courses to satisfy one of the BME tracks. May be repeated for credit, but no more than 3 semester credit hours will apply towards a bachelor’s degree in Biomedical Engineering. This course has Differential Tuition. Course Fee: LRE1 $25; STSE $10.
BME 3042. Biomedical Engineering Research. (0-0) 2 Credit Hours.
Prerequisite: Consent of instructor. Advanced laboratory practice and introduction to biomedical engineering research. This course may be counted as one of the courses to satisfy one of the BME tracks. May be repeated for credit, but no more than 3 semester credit hours will apply towards a bachelor’s degree in Biomedical Engineering. This course has Differential Tuition.
BME 3043. Biomedical Engineering Research. (0-0) 3 Credit Hours.
Prerequisite: Consent of instructor. Advanced laboratory practice and introduction to biomedical engineering research. This course may be counted as one of the courses to satisfy one of the BME tracks. May be repeated for credit, but no more than 3 semester credit hours will apply towards a bachelor’s degree in Biomedical Engineering. This course has Differential Tuition.
BME 3113. Cellular Biology for Biomedical Engineering. (3-0) 3 Credit Hours.
Prerequisites: Major in Biomedical Engineering and a grade of "C-" or better in BME 2103.
Introduction to concepts and principles in cell and molecular biology. Topics include the structure and function of biomolecules, the fundamentals of DNA synthesis and repair, gene expression, cell metabolism, cell signaling, the cytoskeleton, and the cell cycle. (Formerly BME 3114. Same as CME 3113. Credit can only be earned for one of the following: BME 3113, BME 3114, and CME 3113.) This course has Differential Tuition.
BME 3121. Cellular Biology for Biomedical Engineering Laboratory. (0-3) 1 Credit Hour.
Prerequisite: Major in Biomedical Engineering and a grade of "C-" or better in BME 2103; completion of or concurrent enrollment in BME 3113 (formerly BME 3114). This laboratory course is designed to reinforce concepts from BME 3113 (formerly BME 3114) and provide students with the ability to use techniques and procedures commonly used in cell and molecular biology with biomedical engineering applications. This course has Differential Tuition. Course fee: L001 $30.
BME 3203. Biomechanics II: Cardiovascular. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in BME 2203 and BME 3211. Continuation of fundamental biomechanics to include elasticity, viscoelasticity, deformation, stress analysis, blood flow in the systemic and pulmonary circulation, and fluid-structure interaction. (Same as CME 3803. Credit cannot be earned for both BME 3203 and CME 3803.) Generally offered: Fall. This course has Differential Tuition. Course Fee: DL01 $75.
BME 3211. Biomedical Engineering Laboratory I. (0-4) 1 Credit Hour.
Prerequisite: A grade of "C-" or better in BME 1002; completion of or concurrent enrollment in BME 2203, BME 3003, and either STA 1403 or STA 2303. A biomedical engineering lab in biomechanics and biomaterials. This lab-based course will emphasize the synthesis and characterization of mechanical properties as well as physical and chemical properties of biomaterials. (Formerly listed as BME 2211 in previous catalogs. Credit cannot be earned for both BME 3211 and BME 2211.) This course has Differential Tuition. Course Fee: L001 $30.
BME 3303. Bioinstrumentation. (3-1) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in BME 2203. Fundamental principles of bioinstrumentation used in clinical and research measurements will be covered. Topics include: principles of transducer operation, amplifiers and signal processing, recording and display. This course includes a 3 hour lecture and a 1 hour recitation. (Same as CME 3903. Credit cannot be earned for both BME 3303 and CME 3903.) Generally offered: Fall. This course has Differential Tuition. Course Fee: DL01 $75.
BME 3311. Biomedical Engineering Laboratory II. (0-4) 1 Credit Hour.
Prerequisite: Completion of or concurrent enrollment in BME 3303. A biomedical engineering lab in bioinstrumentation. This course will involve the design and testing of hardware and software for acquiring and analyzing biological signals. Generally offered: Fall. This course has Differential Tuition. Course Fee: L001 $30.
BME 3373. Modeling and Simulation Using MATLAB. (3-0) 3 Credit Hours.
Prerequisite: Junior status with a major in Biomedical Engineering and a grade of "C-" or better in BME 2103, BME 2203, BME 3211, and EGR 3423, or permission by instructor; completion of or concurrent enrollment in BME 3311. Introduction to programming using MATLAB. Topics may include modeling biomedical phenomena, including neuronal action potentials, muscles, the heart and circulatory system, and problem-solving in biomechanics. This course has Differential Tuition.
BME 3413. Biocompatibility of Materials: Tissue-Biomaterial Interactions. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in BME 2103, BME 3003, BME 3113, and BME 3121. This course is an introduction to the interactions of cells and tissues with biomaterials. Blood composition and blood-material interactions, responses of the inflammatory and immune systems to biomaterials, the process of wound healing, protein structure and interactions with material surfaces, the mechanisms of cell interactions with extracellular matrix components, and cell/tissue responses to implant materials are reviewed in detail. Case studies of cardiovascular and orthopedic implants are discussed to illustrate that judicious selection of materials is a key aspect of implant design and a crucial choice for the success of various biomedical applications (e.g., in tissue engineering and biotechnology) which require regeneration of tissues. (Same as CME 3413 and BME 4423. Credit can only be earned for one of the following: BME 3413, BME 4423, or CME 3413). Generally offered: Fall. This course has Differential Tuition. Course Fee: DL01 $75.
BME 3503. Nanomaterials and Nanobiotechnology. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in BME 3003.
This course will introduce an overview of nanomaterials and nanotechnology development. Topics may include biocompatible nanomaterials, microfabrication, microfluidics, lab-on-a-chip, and applications in biomedical engineering. (Formerly titled "Fundamentals of Nanobiotechnology.") (Same as CME 3513. Credit cannot be earned for both BME 3503 and CME 3513.) Generally offered: Spring. This course has Differential Tuition. Course fee: DL01 $75.
BME 3703. Biotransport Phenomena. (3-1) 3 Credit Hours.
Prerequisites: A grade of "C-" or better in BME 3303 and BME 3373. Corequisite: BME 3711.
This course introduces the concepts of quantitative modeling of biological systems with respect to mass, momentum, and energy transport. We will study the use of conservation laws to model cardiopulmonary, renal, and thermal systems of the human physiology, and apply these principles to design artificial and extracorporeal devices and drug delivery systems for pharmacokinetic analysis. This course includes a 3 hour lecture and a 1 hour recitation.
Generally offered: Spring. This course has Differential Tuition.
BME 3711. Biomedical Engineering Laboratory III. (0-4) 1 Credit Hour.
Corequisites: BME 3703. A biomedical engineering lab in biotransport phenomena. Experiments related to mass, momentum, and energy conservation in biological systems such as measurements of apparent viscosity in microcirculation, oxygen diffusivity, and thermal conductivity. Generally offered: Spring. This course has Differential Tuition. Course Fee: L001 $30.
BME 3803. Programming and Introductory AI for Biomedical Engineering. (3-0) 3 Credit Hours.
Prerequisite: Major in Biomedical Engineering and a grade of “C-" or better in BME 1002 and BME 3373. Introduction to the Python language and emerging AI methodology in the context of biomedical applications. Use of Python packages and AI simulations to solve contemporary biomedical engineering problems. This course has Differential Tuition.
BME 3813. Machine and Deep Learning Theory to Solve Biomedical Engineering Problems. (3-0) 3 Credit Hours.
Prerequisite: Major in Biomedical Engineering and a grade of “C-" or better in MAT 1213. This course aims to provide students with the fundamentals of machine and deep learning. The topics include the mathematical derivations that transform these principles into practical algorithms. A course research project provides practical experiences in implementing and adjusting ML and DL frameworks to solve real-world biomedical challenges. This course has Differential Tuition.
BME 4203. Biomechanics III. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in BME 2203.
Topics may include elasticity, viscoelasticity, deformation, stress and strain analysis, stress and strain in tissue and organs, and problem solving and design in biomechanics using statics, mechanics of materials, kinematics, and/or dynamics concepts.
This course has Differential Tuition. Course Fees: LRE1 $25; STSE $30.
BME 4213. Tissue Mechanics. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in BME 2203. Topics may include biomechanics characterization, modeling, and properties of regenerating tissues ranging from bone, cartilage, tendons, ligaments, skin, adipose tissue, nerves, bladder, eye, and pulmonary and cardiovascular tissues. This course has Differential Tuition.
BME 4233. Computational Biomechanics. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in BME 2203, BME 3373, and EGR 3423, or consent from the instructor. This course will provide students with practical knowledge and tools to perform biomechanical analysis through computational modeling. The course applies fundamentals of mechanics of material and the methods of computational modeling such as the finite element method (FEM) to model biological systems and biomechanical components and simulate biomedical phenomena. Examples and problems may be solved analytically and with the use of commercially available FEM software. Some basic knowledge of computer programming is recommended. This course has Differential Tuition.
BME 4283. Impact Biomechanics. (3-0) 3 Credit Hours.
Prerequisites: Senior status with a major in Biomedical Engineering and a grade of "C-" or better in BME 2203 or consent from the instructor.
This course will cover the response of the human organism to impact loading. Topics will include dynamics, kinetics, injury mechanisms of the head, spine, thorax, abdomen, and extremities, human tolerance to impact, anthropomorphic test devices, mathematical models, and human subject testing. Impact scenarios covered will include automotive, aerospace, combat, and sports. Maybe repeated for credit when topics vary, but not more than 6 semester credit hours will apply to a bachelor’s degree. This course has Differential Tuition.
BME 4293. Topics in Biomechanics. (3-0) 3 Credit Hours.
Prerequisite: Senior status with a major in Biomedical Engineering and a grade of "C-" or better in BME 2203. Specific topics in biomechanics. May be repeated for credit when topics vary, but not more than 6 semester credit hours will apply to a bachelor’s degree. This course has Differential Tuition. Course Fee: DL01 $75.
BME 4423. Tissue Engineering. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in BME 2103, BME 3003, BME 3113, and BME 3121. This course is an introduction to the current status of practice and advances in tissue engineering. Tissue engineering is the biomedical engineering discipline that applies science and technology to develop replacements for damaged and/or diseased tissues of the body. The course focuses on fundamental aspects of new tissue formation, specifically cells, biomaterials, biochemical cues, and biophysical stimuli, which are part of the physiological milieu. Applications of the latest advances in current knowledge of the aforementioned aspects in designing and formulating cell-containing constructs composed of natural and/or synthetic biomaterial scaffolds is necessary for successful outcomes in tissue engineering. Examples of applications in bone, cartilage, skin, and vascular tissues are reviewed in detail. Strategies which are used to address current challenges, pursue emerging opportunities, and explore new scientific directions are discussed. (Same as BME 3413 and CME 3413. Credit can only be earned for one of the following: BME 3413, BME 4423, or CME 3413). This course has Differential Tuition. Course Fee: DL01 $75.
BME 4433. Soft Materials. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in BME 3003 or CME 3003 and a junior or senior status in the program. A review of specific topics in soft biomaterials with an emphasis on the use of polymer matrices. Aspects of material synthesis and characterization will be addressed, along with their applications in nano- and micro-technologies, drug delivery, biosensing, and tissue engineering. This course has Differential Tuition.
BME 4443. Stem Cell Engineering. (3-0) 3 Credit Hours.
Prerequisite: BME 3003 or CME 3003, BME 3113 (BME 3114 in previous catalogs), BME 3121, and senior status in the program. A review of special topics and recent advancements in stem cell engineering.
This course has Differential Tuition.
BME 4453. Fundamentals to Polymer Science and Engineering with Select Applications. (3-0) 3 Credit Hours.
Prerequisite: Major in Biomedical Engineering and a grade of “C-" or better in BME 3003 or equivalent. This course introduces the fundamentals of polymer chemistry and engineering, characterization of polymer properties, and polymer processing. Current applications of polymeric materials in materials engineering and bioengineering are highlighted and discussed in detail. (Same as CME 4713. Credit cannot be earned for both CME 4713 and BME 4453.) This course has Differential Tuition.
BME 4463. Cellular Mechanics and Mechanobiology. (3-0) 3 Credit Hours.
Prerequisite: Major in Biomedical Engineering and a grade of “C-" or better in BME 3113 and BME 3121. The goal of the course will be to teach how cells sense, process, and respond to mechanical forces; and to study how physical forces and changes in cells contribute to development, physiology, and disease. This course has Differential Tuition.
BME 4483. Topics in Biomaterials. (3-0) 3 Credit Hours.
Prerequisite: Senior status with a major in Biomedical Engineering and a grade of "C-" or better in BME 3003. Specific topics in biomaterials. May be repeated for credit when topics vary, but not more than 6 semester credit hours will apply to a bachelor’s degree. This course has Differential Tuition. Course Fee: DL01 $75.
BME 4493. Topics in Tissue Engineering. (3-0) 3 Credit Hours.
Prerequisite: Senior status with a major in Biomedical Engineering and a grade of "C-" or better in BME 3003, BME 3113 (BME 3114 in previous catalogs), and BME 3121. Specific topics in tissue engineering. May be repeated for credit when topics vary, but not more than 6 semester credit hours will apply to a bachelor’s degree. This course has Differential Tuition. Course Fee: LRE1 $25; STSE $30.
BME 4503. Biosensors. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in BME 3303. Basics to biological detection and in-depth view of device design and performance analyses. Topics may include optical, electrochemical, acoustic, piezoelectric, and nanobiosensors. This course has Differential Tuition. Course Fee: LRE1 $25; STSE $30.
BME 4603. Biophotonics. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in EGR 2323. This course will introduce the fundamental principles of biophotonics and will focus on their applications to address critical issues in the frontier of biomedical science and technology. Topics may include fundamentals of light interactions with molecules, cells, and tissues, optical imaging, optical biosensing, flow cytometry, photodynamic therapy, laser tweezers and laser surgery, and nanobiotechnology. Generally offered: Fall. This course has Differential Tuition. Course Fee: DL01 $75.
BME 4613. Biomedical Imaging. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in EGR 2323.
This course will examine, from a systems perspective, the techniques used in a variety of medical imaging modalities, which include x-ray imaging, computed tomography, magnetic resonance imaging, nuclear medicine, ultrasound imaging, and photoacoustic imaging. The fundamental principles and engineering underlying each imaging modality will be discussed and a performance analysis of each system will be examined. This course has Differential Tuition. Course fee: DL01 $75.
BME 4623. Biomedical Optics. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in EGR 2323. This course will introduce the fundamental principles of modern and classical optics and their applications for biomedical research. State-of-the-art topics on cutting-edge research in the area of optics and lasers in medicine and biology will be covered. This course has Differential Tuition. Course Fee: LRE1 $25; STSE $30.
BME 4713. Cellular Engineering. (3-0) 3 Credit Hours.
Prerequisite: BME 3113 and BME 3121. This course focuses on the engineering of cell function for applications in biomedical engineering. Topics include cell conditioning, genetic engineering and gene therapy, basic principles of stem cell engineering, and translational applications of cell engineering.
This course has Differential Tuition. Course Fee: DL01 $75.
BME 4793. Topics in Cellular Engineering. (3-0) 3 Credit Hours.
Prerequisite: Senior status with a major in Biomedical Engineering and a grade of "C-" or better in BME 3113 (BME 3114 in previous catalogs), BME 3121, and EGR 2323. Specific topics in cellular engineering. May be repeated for credit when topics vary, but not more than 6 semester credit hours will apply to a bachelor’s degree. This course has Differential Tuition. Course Fee: DL01 $75.
BME 4803. Biomedical Data Science. (3-0) 3 Credit Hours.
Prerequisite: Major in Biomedical Engineering and a grade of “C-” or better in BME 1002, BME 3373, and BME 3803, or permission from the instructor. This course aims to provide students with the ability to use computational methods to understand and analyze biological data. Topics include a survey of high-throughput biomedical data analysis methods, modeling of signaling pathways, image analysis, and artificial intelligence methods. A course research project provides practical experience in applying computational tools to solve real-world biomedical challenges. This course has Differential Tuition.
BME 4813. Generative Modeling for Biomedical Engineering. (3-0) 3 Credit Hours.
Prerequisite: Major in Biomedical Engineering and a grade of “C-" or better in BME 1002 and BME 3373. This course will introduce new methods in machine learning, bioinformatics, and artificial intelligence that support generative model building to design experiments and predict solutions to biomedical engineering problems. This course has Differential Tuition.
BME 4823. Data Analytics to Support Medical Decision Making. (3-0) 3 Credit Hours.
Prerequisite: Major in Biomedical Engineering and a grade of “C-" or better in STA 1403 or STA 2303, BME 1002, and BME 3373. This course will leverage data science methods to support the development of models to understand complex problems in healthcare and inform decision and policy making. This course has Differential Tuition.
BME 4903. Senior BME Design I. (3-0) 3 Credit Hours.
Prerequisites: Senior status with a major in Biomedical Engineering and a grade of "C-" or better in BME 3023 and BME 3703.
Development of project proposals and presentation of conceptual designs. Industrial collaboration and/or faculty sponsorship of these projects is encouraged. This course has Differential Tuition.
BME 4913. Senior BME Design II. (3-0) 3 Credit Hours.
Prerequisite: Senior status with a major in Biomedical Engineering and a grade of "C-" or better in BME 4903.
Continuation of the development of an instructor-approved design project, testing of the design project, and presentation of the findings. Industrial cooperation or faculty sponsorship of projects is encouraged. This course has Differential Tuition.
BME 4923. Orthopaedic Device Design. (3-0) 3 Credit Hours.
Prerequisite: Senior status with a major in Biomedical Engineering and a grade of "C-" or better in BME 2203, or consent from the instructor. This course will educate students about current biomedical technologies and product development. Topics covered will include ideation, concept development, design methodologies, business plan basics, regulatory concepts for medical devices, and intellectual property management. May be repeated for credit when topics vary, but not more than 6 semester credit hours will apply to a bachelor’s degree. This course has Differential Tuition.
Chemical Engineering (CME) Courses
CME 1202. Introduction to Chemical Engineering. (2-0) 2 Credit Hours.
A broad survey of the practice of chemical engineering, intended to expose students to various areas of chemical engineering and potential career paths (e.g., bioengineering, environmental engineering, materials engineering, and petroleum/energy engineering) through discussions and guest lectures. Students will review ethics and safety, and practice technical communication through oral presentations and written assignments. Course Fee: LRE1 $25; STSE $20.
CME 2103. Chemical Process Principles. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in CHE 1113 and MAT 1213 (or MAT 1214 in previous catalogs). Students will first have the opportunity to learn basic principles of chemical engineering, including temperature, pressure, pressure head, mass, moles, volume, concentration, density, time-dependent variables, and buoyancy. They will apply techniques such as interpolation, linearization, statistical analysis, and Gauss-Jordan elimination. Students will define system boundaries for closed and open systems to apply material and energy balances to single units and multiple unit processes; processes containing recycle loops; non-reactive and reactive processes; processes with ideal and nonideal gases; and processes with liquid-liquid equilibrium, solid-vapor equilibrium, and single and multi-component vapor liquid equilibrium. Students will have the opportunity to learn the first law of thermodynamics to derive and apply the general energy balance, mechanical energy balance, and Bernoulli equation. Students will have the opportunity to learn the differences between extensive versus intensive variables, and state functions versus path functions. Students will have the opportunity to develop an understanding of system and stream energies (enthalpy, internal energy, potential energy, and kinetic energy) versus energy transfer terms (heat and work) and apply them to non-reactive and reactive chemical processes. Course Fee: LRE1 $25; STSE $30; DL01 $75.
CME 2113. Physiology for Chemical Engineering. (3-0) 3 Credit Hours.
Prerequisites: A grade of "C-" of better in BIO 1203 and MAT 1213 (or MAT 1214 in previous catalogs).
Fundamental principles of general and organs physiology, including composition and concentration of cellular and other body fluids, types of transport (e.g., diffusion, membrane transporters), energy (thermodynamics, metabolism), enzymes, feedback control, and membrane potentials with engineering applications and mathematical modeling. (Same as BME 2103. Credit cannot be earned for both CME 2113 and BME 2103.) Course Fees: LRE1 $25; STSE $30.
CME 2301. Chemical Process Safety and Risk Management. (1-0) 1 Credit Hour.
(This course is for students in catalogs prior to 2022-2024.) Application of chemical process safety, risk assessment and management, including hazardous waste disposal and remediation. (Same as CME 3302 and CME 4001. Credit cannot be earned for more than one of the following: CME 2301, CME 3302, and CME 4001.) Course Fees: LRE1 $25; STSE $10.
CME 2303. Transport Phenomena I. (3-1) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in CME 2103 and EGR 2313; completion of or concurrent enrollment in EGR 3423. This course covers the fundamentals of momentum transport, fluid mechanics, and fluid unit operations. Topics discussed include fluid statics, fluid properties and fluid flow, overall mass, energy and momentum balances, incompressible and compressible flow in pipes, flow in packed and fluidized beds, pumps, compressors, agitators and nozzles, differential equations of fluid flow, non-Newtonian fluids, potential and creeping flow, and boundary layer and turbulent flow. This course includes a 3-hour lecture and a 1-hour recitation per week. (Credit cannot be earned for both CME 2303 and CME 3303). Differential Tuition: $165. Course Fee: LRE1 $25; STSE $30.
CME 2403. Introduction to Programming for Engineers. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in EGR 2302. This course is designed to provide a foundation in programming. Topics include data types, the use of variables for storing data, arrays and strings, mathematical and logical expressions, loops, intro to data structures, structured program design, file input and output, plotting 2-D and 3-D data, and application to solving engineering problems. Course Fee: LRE1 $25; STSE $30.
CME 2503. Thermodynamics I. (3-1) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in CME 2103 and EGR 2313. Thermodynamic analysis and modeling of pure component and constant concentration systems. Topics include basic thermodynamic variables, introductory equations of state, first and second laws of thermodynamics (closed and open systems), reversible and irreversible processes, thermodynamic cycles, thermodynamic potentials, Maxwell relations, phase change properties and introduction to statistical thermodynamics. (Credit cannot be earned for both CME 2503 and CME 3103 or ME 3293.) This course includes a 3-hour lecture and a 1-hour recitation per week. Course Fee: LRE1 $25; STSE $30.
CME 2803. Biomechanics I. (3-1) 3 Credit Hours.
Prerequisite: A grade of “C-” or better in EGR 2302 or EGR 2323 and PHY 1943; completion of or concurrent enrollment in EGR 3423. Introduction to fundamental engineering mechanics with focus on the human body. (Same as BME 2203. Credit cannot be earned for both CME 2803 and BME 2203.). Course Fee: LRE1 $25; STSE $30; DL01 $75.
CME 3003. Introduction to Materials Science and Engineering. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in CME 1202.
Foundation for understanding the structure and properties of engineering materials such as ceramics, glass, polymers, composites, biomaterials, metals, and alloys. An integrated introduction of materials’ microstructure, thermodynamic properties, and corresponding mechanical, electrical, optical, and magnetic properties. (Same as BME 3003. Credit cannot be earned for both CME 3003 and BME 3003.) This course has Differential Tuition. Course fee: DL01 $75.
CME 3113. Cellular Biology for Chemical Engineering. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in CME 2103.
Introduction to concepts and principles in cell and molecular biology. Topics include the structure and function of biomolecules, the fundamentals of DNA synthesis and repair, gene expression, cell metabolism, cell signaling, the cytoskeleton, and the cell cycle. This class consists of a 3-hour lecture. (Same as BME 3114 and BME 3113. Credit can only be earned for one of the following: CME 3113, BME 3114, or BME 3113.) This course has Differential Tuition. Course fee: DL01 $75.
CME 3123. Computational Methods in Chemical Engineering. (3-1) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in CME 2403; "C-" or better in EGR 2313; "C-" or better in EGR 2302, completion of or concurrent enrollment in EGR 3423. Introduction to numerical techniques and computational tools essential for chemical engineering, including the use of data acquisition and processing, numerical analysis of linear, non-linear, and differential equations. Students will have the opportunity to learn to use computer software to aid in their analysis (e.g., Matlab). This course includes a 3-hour lecture and a 1-hour recitation per week. This course has Differential Tuition.
CME 3203. Thermodynamics II. (3-1) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in CME 2503. Thermodynamic analysis and modeling of pure and multicomponent mixtures with variable concentration. This course focuses mainly on phase and chemical equilibria. Topics covered include thermodynamic properties estimation, equations of state, fugacity, activity coefficient models, phase equilibrium, chemical reactions equilibrium, and intermolecular forces. This course includes a 3-hour lecture and a 1-hour recitation per week. (Credit cannot be earned for both CME 3203 and CME 3103 or ME 3293.) This course has Differential Tuition.
CME 3302. Chemical Process Safety and Risk Management. (2-0) 2 Credit Hours.
Application of process safety and risk assessment and management in the petrochemical and related industries. The Risk Based Process Safety (RBPS) framework is used. Process safety design strategies are incorporated in a team project to complete a Hazard Identification and Risk Analysis (HIRA) for a given petrochemical process. Impact on employees, community, and the environment are addressed. The course includes lectures, guest speakers from industry, and investigation of case studies involving significant process safety events. (Same as CME 2301 and CME 4001. Credit cannot be earned for more than one of the following: CME 2301, CME 3302, and CME 4001.) This course has Differential Tuition.
CME 3403. Separation Processes. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in CME 2303 (formerly CME 3303). This course focuses on the application of fundamental thermodynamic and transport phenomena principles to the separation of chemical and biological mixtures. Topics covered include the fundamental principles of select solid-fluid, liquid-liquid, and gas-liquid unit operations and their practical sizing and design. This course has Differential Tuition.
CME 3413. Biocompatibility of Materials: Tissue-Biomaterial Interaction. (3-0) 3 Credit Hours.
Prerequisites: A grade of "C-" or better in CME 3003 and CME 3113.
This course is an introduction to the interactions of cells and tissues with biomaterials. Blood composition and blood-material interactions, responses of the inflammatory and immune systems to biomaterials, the process of wound healing, protein structure and interactions with material surfaces, and the mechanisms of cell interactions with extracellular matrix components as well as cell/tissue responses to implant materials are reviewed in detail. Case studies of cardiovascular and orthopedic implants are discussed to illustrate that judicious selection of materials is a key aspect of implant design and a crucial choice for the success of various biomedical applications (e.g., in tissue engineering and biotechnology) which require regeneration of tissues. (Same as BME 3413. Credit cannot be earned for both CME 3413 and BME 3413.) This course has Differential Tuition.
CME 3433. Crystal Chemistry of Structure and Properties. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in CME 3003.
Principles of crystal chemistry applied to the relationships of crystallographic structures, compositions, and engineering properties of materials. This course has Differential Tuition. Course Fees: LRE1 $25; STSE $30.
CME 3503. Kinetics and Reactor Design. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in CME 2303 (formerly CME 3303). Fundamental principles to the design and analysis of batch, continuously stirred tank, and fixed bed chemical reactors; steady and unsteady state operations; effects of pressure and temperature; heterogeneous catalysis; analysis of transport processes in catalysis; special topics may include enzyme catalysis; fluid bed reactors; membrane reactors; and microscale reactors. This course has Differential Tuition. Course Fee: DL01 $75.
CME 3513. Nanomaterials and Nanobiotechnology. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in CME 3003.
This course will introduce an overview of nanomaterials and nanotechnology development. Topics may include biocompatible nanomaterials, microfabrication, microfluidics, lab-on-a-chip, and applications in biomedical engineering. (Same as BME 3503. Credit cannot be earned for both CME 3513 and BME 3503.) This course has Differential Tuition.
CME 3601. Chemical Engineering Laboratory l. (0-3) 1 Credit Hour.
Prerequisite: Completion of or concurrent enrollment in CME 3503.
Basic principles and statistical design of experiments using software tools; experiments demonstrating key unit operations with emphasis on fluid flow and heat transfer. Written reports and oral presentations required. This course has Differential Tuition. Course Fee: L001 $30.
CME 3703. Transport Phenomena II. (3-1) 3 Credit Hours.
Prerequisite: CME 2303 (CME 3303 in previous catalogs) or instructor approval.
This course focuses on the fundamentals and applications associated with heat and mass transfer. Topics discussed steady state conduction, principles of unsteady state heat transfer, convection, heat transfer coefficients, heat exchangers, radiation, steady state mass transfer, diffusions, convection, mass transfer coefficients, and unsteady state mass transfer. This course includes a 3-hour lecture and a 1-hour recitation per week. This course has Differential Tuition. Course fee: DL01 $75.
CME 3803. Biomechanics II. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in CME 2803.
Continuation of fundamental biomechanics to include elasticity, viscoelasticity, deformation, stress analysis, blood flow in the systemic and pulmonary circulation, and fluid-structure interaction. (Same as BME 3203. Credit cannot be earned for both CME 3803 and BME 3203.) This course has Differential Tuition. Course fee: DL01 $75.
CME 3903. Bioinstrumentation. (3-1) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in CME 2803.
Topics include: principles of transducer operation, amplifiers and signal processing, recording and display. This course includes a 3 hour lecture and a 1 hour recitation per week. (Same as BME 3303. Credit cannot be earned for both CME 3903 and BME 3303.) This course has Differential Tuition.
CME 4103. Process Dynamics and Control. (3-1) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in CME 3403. Modeling of dynamic processes; response of uncontrolled systems; transfer functions; response and stability of controlled systems; frequency response; design of feedback controllers; cascade, feed forward, and multivariable control systems; process instrumentation; use of simulators to design feedback controllers. One hour of problem solving recitation per week. This course has Differential Tuition. Course Fee: DL01 $75.
CME 4163. Chemical Engineering Design Fundamentals. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in CME 3203, CME 3403, CME 3703, and CME 3302. Application of design and economic principles to chemical engineering systems; analysis of costs of equipment, feedstocks, utilities, and risk assessment; optimization of equipment design using simulation tools. Students will be assembled in teams to perform materials and energy balances on their capstone design projects. (Formerly titled "Thermodynamics II.") This course has Differential Tuition. Course Fee: DL01 $75.
CME 4201. Chemical Engineering Laboratory ll. (0-3) 1 Credit Hour.
Prerequisite: Completion of or concurrent enrollment in CME 4103.
Experiments demonstrating key unit operations with emphasis on mass transfer with and without reactions; hands on experience with process control. Written and oral reports required. This course has Differential Tuition.
CME 4263. Plant Design. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in CME 4163 and completion of or concurrent enrollment in EGR 3713. Strategic application of technical and economic constraints in the design of a chemical processing plant including most aspects of typical industrial design, integration of process safety, and environmental impact factors. Students will work in small groups and submit a plant design project report that has a comprehensive design of all equipment included in the plant. Students will present the results of their design in a College of Engineering and Integrated Design-wide symposium. (Same as CME 4264. Credit cannot be earned for both CME 4264 and CME 4263.) This course has Differential Tuition.
CME 4423. Rheology. (3-0) 3 Credit Hours.
Prerequisite: To be determined by the instructor. This course covers the fundamentals of rheology as they apply to the oil and gas industry. Topics covered include crude oil flow rheology, drilling fluids, fluids in completion, crude oil pipelining, and fractal characterization of wax. This course has Differential Tuition. Course Fee: DL01 $75; IUCS $45.
CME 4433. Process Optimization. (3-0) 3 Credit Hours.
Modern optimization theory, algorithms, and applications for large scale chemical engineering real-world problems. Topics included in the course and prerequisites required for the course will be decided upon by the instructor who teaches the course. This course has Differential Tuition.
CME 4513. Selected Topics in Bioengineering. (3-0) 3 Credit Hours.
Prerequisites: May vary with the topic (refer to the course syllabus on Bluebook or contact the instructor).
An organized course offering the opportunity for specialized study not normally or not often available as part of the regular course offerings. May be repeated for credit when topics vary, but not more than 6 semester credit hours will apply to a bachelor’s degree. This course has Differential Tuition. Course fee: DL01 $75.
CME 4523. Selected Topics in Petroleum/Energy Engineering. (3-0) 3 Credit Hours.
Prerequisites: May vary with the topic (refer to the course syllabus on Bluebook or contact the instructor).
An organized course offering the opportunity for specialized study not normally or not often available as part of the regular course offerings. May be repeated for credit when topics vary, but not more than 6 semester credit hours will apply to a bachelor's degree. This course has Differential Tuition. Course fee: DL01 $75.
CME 4533. Selected Topics in Materials Science and Engineering. (3-0) 3 Credit Hours.
Prerequisites: May vary with the topic (refer to the course syllabus on Bluebook or contact the instructor).
An organized course offering the opportunity for specialized study not normally or not often available as part of the regular course offerings. May be repeated for credit when topics vary, but not more than 6 semester credit hours will apply to a bachelor’s degree. This course has Differential Tuition. Course fee: DL01 $75.
CME 4543. Selected Topics in Environmental Engineering. (3-0) 3 Credit Hours.
Prerequisites: May vary with the topic (refer to the course syllabus on Bluebook or contact the instructor).
An organized course offering the opportunity for specialized study not normally or not often available as part of the regular course offerings. May be repeated for credit when topics vary, but not more than 6 semester credit hours will apply to a bachelor’s degree. This course has Differential Tuition. Course Fees: LRE1 $25; STSE $30; DL01 $75.
CME 4701. Chemical Engineering Research. (0-0) 1 Credit Hour.
Prerequisite: Permission in writing (form online) from the instructor, the student's advisor, and the Department Chair.
Advanced laboratory practice and introduction to chemical engineering research. This course may be used to satisfy one of the electives for the CME tracks. May be repeated for credit, but no more than 3 semester credit hours will apply towards the bachelor’s degree in Chemical Engineering. This course cannot be taken if 3 semester credit hours in CME 4913 or CME 4803 have already been earned. This course has Differential Tuition.
CME 4702. Chemical Engineering Research. (0-0) 2 Credit Hours.
Prerequisite: Permission in writing (form online) from the instructor, the student's advisor, and the Department Chair.
Advanced laboratory practice and introduction to chemical engineering research. This course may be used to satisfy one of the electives for the CME tracks. May be repeated for credit, but no more than 3 semester credit hours will apply towards the bachelor’s degree in Chemical Engineering. This course cannot be taken if 3 semester credit hours in CME 4913 or CME 4803 have already been earned. This course has Differential Tuition.
CME 4703. Chemical Engineering Research. (0-0) 3 Credit Hours.
Prerequisite: Permission in writing (form online) from the instructor, the student's advisor, and the Department Chair.
Advanced laboratory practice and introduction to chemical engineering research. This course may be used to satisfy one of the electives for the CME tracks. May be repeated for credit, but no more than 3 semester credit hours will apply towards the bachelor’s degree in Chemical Engineering. This course cannot be taken if 3 semester credit hours in CME 4913 or CME 4803 have already been earned. This course has Differential Tuition.
CME 4713. Fundamentals to Polymer Science and Engineering with Select Applications. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in CME 3003 or BME 3003. This course introduces the fundamentals of polymer chemistry and engineering, characterization of polymer properties, and polymer processing. Current applications of polymeric materials in materials engineering and bioengineering are highlighted and discussed in detail. (Same as BME 4453. Credit cannot be earned for both CME 4713 and BME 4453.) This course has Differential Tuition.
CME 4723. Heterogeneous Catalysis and Surface Science. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in CME 2103, or instructor approval. This course covers the main types of important industrial catalysts and their usage in a variety of applications in energy and fuels, the environment, and sustainability. Catalyst formulations, characterization techniques (temperature-programmed, adsorptive, and spectroscopic), and performance (activity, selectivity, and stability) will be covered. Issues associated with the deactivation of catalysts (sintering, attrition, Ostwald ripening, poisoning, oxidation) and how catalysts can be regenerated will be examined. This course has Differential Tuition.
CME 4733. Fundamentals of Interfaces, Nanoparticles, and Other Colloids. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in CME 2503 or ME 3293. This course will cover fundamental and applied aspects of surfaces and interfaces with significant effects on chemical processes, materials, and the environment (including underground systems). It will also establish fundamental relationships between different types of colloids (e.g., emulsions, foams, and nanoparticles) and lay out basic principles needed to control their behavior. This course has Differential Tuition.
CME 4803. Chemical Engineering Internship. (0-0) 3 Credit Hours.
Prerequisite: Permission in writing (form online) from the instructor, the student's advisor, and the Department Chair.
Internship in the chemical engineering industry. No more than 3 semester credit hours will apply to the bachelor’s degree in Chemical Engineering. This course cannot be taken if 3 semester credit hours in CME 4913 or CME 4703 have already been earned. This course has Differential Tuition.
CME 4823. Electrochemistry and Electrochemical Engineering. (3-0) 3 Credit Hours.
Prerequisite: A grade of "C-" or better in CME 2503. This course will teach and apply the fundamentals of electrochemistry to electrochemical reactor analysis and design. Building on a theoretical foundation of thermodynamics, kinetics, and transport processes in electrochemical systems, this course will examine corrosion engineering, electrodeposition, batteries and fuel cells, industrial electrolysis, and electrosynthesis. This course has Differential Tuition.
CME 4911. Independent Study. (0-0) 1 Credit Hour.
Prerequisites: Permission in writing (Independent Study Form available online) from the instructor and the Department Chair.
Independent reading, research, discussion, and/or writing under the direction of a faculty member. May be repeated for credit, but not more than 3 semester credit hours of independent study will apply to a bachelor’s degree in Chemical Engineering. This course cannot be taken if 3 semester credit hours in CME 4703 or CME 4803 have already been earned. (Formerly CME 4601. Credit cannot be earned for both CME 4601 and CME 4911.) This course has Differential Tuition.
CME 4912. Independent Study. (0-0) 2 Credit Hours.
Prerequisite: Permission in writing (Independent Study Form available online) from the instructor and the Department Chair. Independent reading, research, discussion, and/or writing under the direction of a faculty member. May be repeated for credit, but no more than 3 semester credit hours of independent study will apply to a bachelor’s degree in Chemical Engineering. This course cannot be taken if 3 semester credit hours in CME 4703 or CME 4803 have already been earned. (Formerly CME 4602. Credit cannot be earned for both CME 4602 and CME 4912.) This course has Differential Tuition.
CME 4913. Independent Study. (0-0) 3 Credit Hours.
Prerequisites: Permission in writing (Independent Study Form available online) from the instructor and the Department Chair.
Independent reading, research, discussion, and/or writing under the direction of a faculty member. May be repeated for credit, but not more than 3 semester credit hours of independent study will apply to a bachelor’s degree in Chemical Engineering. This course cannot be taken if 3 semester credit hours in CME 4703 or CME 4803 have already been earned. Formerly CME 4603. Credit cannot be earned for both CME 4603 and CME 4913. This course has Differential Tuition.