DEPARTMENT OF NEUROSCIENCE, DEVELOPMENTAL AND REGENERATIVE BIOLOGY

Mission Statement
The mission of the Department of Neuroscience, Developmental and Regenerative Biology is to conduct high-impact, internationally recognized research and to educate and train the next generation of leaders in biological sciences. As a department of neuroscientists, and developmental and regenerative biologists, we focus on understanding organismal, tissue, and cellular function from molecules to behavior in health and disease.

General Information
The Department of Neuroscience, Developmental and Regenerative Biology studies key questions relating to how the brain works in normal and disease states (neuroscience) and how cells and tissues are formed, maintained, and repaired (developmental and regenerative). Collectively and collaboratively, we seek to learn, investigate, and communicate knowledge in these fields. Our diverse and recognized faculty and state-of-the-art laboratory facilities provide students with opportunities for personal interaction, mentorship, and undergraduate research projects.

Neuroscience
Neuroscience research at UTSA is interdisciplinary and explores neural function from molecules to cells to neural networks to behavior. Students will find a highly collaborative atmosphere across the department. Our neuroscience laboratories employ behavioral, cellular, computational, developmental, and molecular approaches to answer questions associated with neural function. Many of our faculty are leading investigators attempting to understand debilitating brain diseases, including Alzheimer’s Disease, Parkinson’s Disease, Epilepsy, and psychopathologies related to anxiety disorders. Students also can participate in various neuroscience-related activities supported by the UTSA Neurosciences Institute and UTSA’s Brain Health Consortium, including weekly seminar and special seminar programs. Graduate study in the neurosciences is supported through an M.S. in Biology degree with an emphasis in Neuroscience, and a Ph.D. degree in Neuroscience.

Developmental and Regenerative Biology
Faculty and students in the areas of Developmental and Regenerative Biology study a wide range of questions relating to stem cells, cancer and cell cycle regulation, tissue regeneration, epigenetic regulation of cell fate and function, gene expression, fertility, and "Disease-in-a-Dish" models, including "organoid" systems. State-of-the-art technologies include genomics, epigenomics, proteomics, cell sorting, and cell imaging. A wide range of lecture courses are available to graduate students in Developmental and Regenerative Biology, along with opportunities for seminar classes, independent study, and directed research. Many of our faculty and students are associated with UTSA’s Institute of Regenerative Medicine, a joint collaborative initiative between UTSA’s Klesse College of Engineering and Integrated Design and the College of Sciences, and multiple research institutions in San Antonio. Graduate study in this area is supported through an M.S. in Biology degree with an emphasis in Developmental and Regenerative Sciences and a Ph.D. degree in Developmental and Regenerative Sciences.

• Ph.D. in Developmental and Regenerative Sciences (p. 1)
• Ph.D. in Neuroscience (p. 2)

Doctor of Philosophy Degree in Developmental and Regenerative Sciences
The Department of Neuroscience, Developmental and Regenerative Biology offers opportunities for advanced study and research leading to the Doctor of Philosophy degree in Developmental and Regenerative Sciences. The degree is awarded to candidates who have displayed an in-depth understanding of the subject matter and demonstrated the ability to make an original contribution to knowledge in their specialized area of study.

The regulations for this degree comply with the general University regulations (refer to Student Policies, General Academic Regulations, and the Graduate Catalog, Doctoral Degree Regulations).

Admission Requirements

• Applicants must have a Bachelor of Arts or a Bachelor of Science degree, preferably in biology, from an accredited university and a minimum grade point average of 3.0 in upper-division or graduate work.
• Applicants must submit, along with the application, transcripts describing previous undergraduate and graduate coursework, three letters of recommendation, and a Statement of Future Plans.
• Applicants whose native language is not English must score at least 79 on the Test of English as a Foreign Language (TOEFL) iBT.

Admission is accompanied by appointment to a teaching assistantship, research assistantship, or research fellowship. The Doctoral Studies Committee is comprised of members selected from the graduate faculty who are responsible for reviewing applications for admission and overseeing academic progress of students enrolled in the program.

Degree Requirements
The degree requires a minimum of 79 semester credit hours beyond the baccalaureate degree for the Ph.D. in Developmental and Regenerative Sciences. The curriculum consists of core courses, courses in scientific writing and scientific teaching, elective courses, seminars, research, and completion of the dissertation following advancement to candidacy. Any grade lower than a “B” in a graduate course or in remedial coursework at the undergraduate level will not count toward the Ph.D. degree.

Students matriculating with a master’s degree may transfer up to 30 semester credit hours toward the Ph.D. degree, provided the courses are comparable to required core or elective courses and are approved by the Doctoral Studies Committee.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDRB 5001</td>
<td>Ethical Conduct in Research</td>
<td>1</td>
</tr>
<tr>
<td>NDRB 5123</td>
<td>Principles of Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>NDRB 5133</td>
<td>Principles of Cell Biology</td>
<td>3</td>
</tr>
</tbody>
</table>

Select courses from the list below to complete a total of 17 credits of core coursework:
Admission into the Doctoral program does not guarantee advancement to candidacy.

Dissertation

Candidates must demonstrate their ability to conduct independent research by completing and defending an original dissertation. The research topic is determined by the student in consultation with their supervising professor and a Dissertation Committee. The Dissertation Committee is selected by the student and supervising professor and approved by 1) the Doctoral Studies committee, 2) the Department Chair, 3) the Dean of the College, and 4) the Dean of the Graduate School. The Dissertation Committee guides and critiques the candidate's research. The Committee is composed of four program faculty and one outside member. The Dissertation Committee must approve the completed dissertation.

Final Oral Examination

Following an open presentation of the dissertation findings, the Dissertation Committee conducts a closed oral examination dealing primarily with the relation of the dissertation to the general field of specialty. Results of the oral examination must be reported to the Dean of the Graduate School. Awarding of the degree is based on the approval of the Dissertation Committee, which is approved by the relevant Doctoral Studies Committee, the Department Chair, and the Dean of the Graduate School. The Dean of the Graduate School certifies the completion of all University-wide requirements.

Doctor of Philosophy Degree in Neuroscience

The Department of Neuroscience, Developmental and Regenerative Biology offers opportunities for advanced study and research leading to the Doctor of Philosophy degree in Neuroscience. This program focuses on training students on topics related to nervous system function. The areas of study aim to understand the brain and neurological disease at many levels, from single cells to circuits and populations, to determine how neural changes affect behavior and cognition. Areas of interest include circuits controlling addiction and motivated behavior, mechanisms of sensation and motor control, learning and memory, spatial navigation, modeling and computational analysis of brain function, and mechanisms of brain abnormalities including neurodegeneration and genetic conditions. The Ph.D. in Neuroscience is awarded to candidates who have displayed an in-depth understanding of the subject matter and demonstrated the ability to make an original contribution to knowledge in their specialized area of study.

The regulations for this degree comply with the general University regulations (refer to Student Policies, General Academic Regulations, and the Graduate Catalog, Doctoral Degree Regulations).

Admission Requirements

Applicants must have a Bachelor of Arts or a Bachelor of Science degree, preferably in biology, from an accredited university, and a minimum grade point average of 3.0 in upper-division and graduate work. Applicants must submit, along with the application, three letters of recommendation, and a Statement of Future Plans. Applicants whose native language is not English must score at least 79 on the Test of English as a Foreign Language (TOEFL) iBT. The Doctoral Studies Committees are comprised of members selected from the graduate faculty and are responsible for reviewing applications for admission.
Degree Requirements

The degree requires a minimum of 79 semester credit hours beyond the baccalaureate degree for the Ph.D. in Neuroscience. The curriculum consists of core courses, elective courses, seminars, required teaching, research, and completion of the dissertation following advancement to candidacy. Any grade lower than “B” in a graduate course or in remedial coursework at the undergraduate level will not count toward the minimum number of required hours. Students matriculating with a master’s degree may use up to 30 semester credit hours toward the degree provided the courses are comparable to core and elective courses and are approved by the Doctoral Studies Committee.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Core Curriculum</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Select courses from the list below to complete a total of 18 credits of core coursework:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDRB 5001</td>
<td>Ethical Conduct in Research</td>
<td></td>
</tr>
<tr>
<td>NDRB 5443</td>
<td>Molecular and Cellular Neurobiology</td>
<td></td>
</tr>
<tr>
<td>NDRB 5453</td>
<td>Neurophysiology</td>
<td></td>
</tr>
<tr>
<td>NDRB 6233</td>
<td>Quantitative Biology</td>
<td></td>
</tr>
<tr>
<td>NDRB 7113</td>
<td>Principles of Biological Scientific Teaching</td>
<td></td>
</tr>
<tr>
<td>NDRB 7143</td>
<td>Principles of Biological Scientific Writing</td>
<td></td>
</tr>
<tr>
<td>Select 2 semester credit hours of Research Rotation in the Fall and Spring of the first year:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDRB 7571</td>
<td>Research Rotations (^1)</td>
<td></td>
</tr>
<tr>
<td>B. Colloquia</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Complete 8 credits of colloquia coursework.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDRB 7041</td>
<td>Colloquium</td>
<td></td>
</tr>
<tr>
<td>C. Doctoral Research</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Select a minimum of 44 credits from the courses below:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doctoral Research courses may only be taken before student’s admission to Ph.D. candidacy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDRB 7211</td>
<td>Doctoral Research</td>
<td></td>
</tr>
<tr>
<td>or NDRB 7212</td>
<td>Doctoral Research</td>
<td></td>
</tr>
<tr>
<td>or NDRB 7213</td>
<td>Doctoral Research</td>
<td></td>
</tr>
<tr>
<td>or NDRB 7214</td>
<td>Doctoral Research</td>
<td></td>
</tr>
<tr>
<td>or NDRB 7215</td>
<td>Doctoral Research</td>
<td></td>
</tr>
<tr>
<td>or NDRB 7216</td>
<td>Doctoral Research</td>
<td></td>
</tr>
<tr>
<td>Doctoral Dissertation courses may only be taken by Ph.D. candidates.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDRB 7311</td>
<td>Doctoral Dissertation</td>
<td></td>
</tr>
<tr>
<td>or NDRB 7312</td>
<td>Doctoral Dissertation</td>
<td></td>
</tr>
<tr>
<td>or NDRB 7313</td>
<td>Doctoral Dissertation</td>
<td></td>
</tr>
<tr>
<td>or NDRB 7314</td>
<td>Doctoral Dissertation</td>
<td></td>
</tr>
<tr>
<td>or NDRB 7315</td>
<td>Doctoral Dissertation</td>
<td></td>
</tr>
<tr>
<td>or NDRB 7316</td>
<td>Doctoral Dissertation</td>
<td></td>
</tr>
</tbody>
</table>

| D. Electives | 9 |
| Select 9 credits of electives from any 5000- to 7000-level lecture courses with the approval of the Neuroscience Doctoral Studies Committee. | |

| Total Credit Hours | 79 |

\(^1\) Enrollment in NDRB 7571 Research Rotations is required in the Fall and Spring semesters of the first year.

The entire program of study must be approved by the student’s dissertation advisor, dissertation committee, and the Neurobiology Doctoral Studies Committee, and must be submitted to the Dean of the Graduate School for final approval.

Advancement to Candidacy

Advancement to candidacy requires a student to complete University and program requirements and to pass written and oral qualifying examinations following completion of course requirements. The examination is administered by the Doctoral Studies Committee of each concentration and is conducted as outlined in the Handbook of Academic Policies and Procedures for each concentration. No more than two attempts to pass qualifying examinations are allowed. Results of the written and oral examinations must be reported to the appropriate Doctoral Studies Committee and the Dean of the Graduate School. Admission into the Doctoral program does not guarantee advancement to candidacy.

Dissertation

Candidates must demonstrate their ability to conduct independent research by completing and defending an original dissertation. The research topic is determined by the student in consultation with their supervising professor and a Dissertation Committee. The Dissertation Committee is selected by the student and supervising professor and approved by 1) the Doctoral Studies committee; 2) the Department Chair; 3) the Dean of the College; and 4) the Dean of the Graduate School. The Dissertation Committee guides and critiques the candidate’s research. The Committee is composed of four program faculty and one outside member. The Dissertation Committee must approve the completed dissertation.

Final Oral Examination

Following an open presentation of the dissertation findings, the Dissertation Committee conducts a closed oral examination dealing primarily with the relation of the dissertation to the general field of specialty. Results of the oral examination must be reported to the Dean of the Graduate School. Awarding of the degree is based on the approval of the Dissertation Committee, which is approved by relevant Doctoral Studies Committee, the Department Chair, and the Dean of the Graduate School. The Dean of the Graduate School certifies the completion of all University-wide requirements.

Neuroscience, Developmental and Regenerative Biology (NDRB) Courses

NDRB 5001. Ethical Conduct in Research. (1-0) 1 Credit Hour.

This course provides a basic overview of the requirements for ethical conduct within the research laboratory. The grade report for this course is either “CR” (satisfactory completion) or “NC” (unsatisfactory completion). (Same as BIO 5001. Formerly BIO 7413. Credit can only be earned for one of the following: NDRB 5001, BIO 5001, or BIO 7413.) Differential Tuition: $50. Course Fee: GS01 $30; IUB1 $10.
NDRB 5033. Biotechnology Laboratory. (0-6) 3 Credit Hours.
Prerequisite: Good Standing. An organized course offering an introduction to routine procedures employed in the modern research laboratory. (Same as BIO 5033. Credit cannot be earned for both BIO 5033 and NDRB 5033.) Differential Tuition: $150. Course Fee: GS01 $90; L001 $30; IUB1 $10.

NDRB 5123. Principles of Molecular Biology. (3-0) 3 Credit Hours.
Prerequisite: BIO 3513 or an equivalent. Molecular structure and function of genes and nucleic acids, and the processes of DNA replication, mutation and repair, as well as transcription and translation of genetic material. Genome projects, functional genomics and the genetic control of development will also be covered. (Formerly BIO 5123. Credit cannot be earned for both NDRB 5123 and BIO 5123.) Differential Tuition: $150. Course Fee: GS01 $90.

NDRB 5133. Principles of Cell Biology. (3-0) 3 Credit Hours.
Prerequisite: BIO 3513 and NDRB 3813, or their equivalents. Basic structure, organization, and differentiation of cells. Cell cycle, signaling, growth, and movement of cells, as well as cellular immunology and cellular aspects of infectious disease will also be covered. Same as BIO 5133. Credit cannot be earned for both NDRB 5133 and BIO 5133. Differential Tuition: $150. Course Fee: GS01 $90; IUB1 $10.

NDRB 5143. Advanced Nucleic Acids Laboratory. (0-6) 3 Credit Hours.
Prerequisite: NDRB 3913 or an equivalent, NDRB 5033 recommended. An introduction to advanced techniques of molecular biology dealing with manipulations and analyses of DNA, including preparation and analysis of genomic DNA, genomic cloning, the polymerase chain reaction (PCR), Southern blotting, DNA sequencing, and computational analysis of DNA sequence data. Same as BIO 5143. Credit cannot be earned for both BIO 5143 and NDRB 5143. Differential Tuition: $150. Course Fee: GS01 $90; IUB1 $10; L001 $30.

NDRB 5163. Recombinant Protein Biotechnology Laboratory. (0-6) 3 Credit Hours.
Prerequisite: Satisfactory completion of NDRB 5033. Small- to large-scale growth of microorganisms and eukaryotic cells followed by downstream processing of supernatants and/or cell pellets, protein purification and protein analysis. Same as BIO 5163. Formerly BIO 7542 and BIO 7543. Credit can only be earned for one of the following: BIO 5163, BIO 7542, BIO 7543, or NDRB 5163. Differential Tuition: $150. Course Fee: GS01 $90; IUB1 $10; L001 $30.

NDRB 5213. Principles of Chemical Biology. (3-0) 3 Credit Hours.
Prerequisite: BIO 3513 and NDRB 3813, or equivalents. Cell- and organism-level functions viewed from a chemical perspective. Studies of molecular interactions of metabolites, pharmaceuticals, proteins, polysaccharides, lipids, and nucleic acids, including protein folding and unfolding, protein modification, ligand binding, proteomics, metabolomics, lipidomics, glycoproteins, and nucleotide modification. (Same as BIO 5213. Credit cannot be earned for both NDRB 5213 and BIO 5213.) Differential Tuition: $150 Course Fee: GS01 $90.

NDRB 5223. Principles of Developmental Biology. (3-0) 3 Credit Hours.
Prerequisite: NDRB 3813 or NDRB 4143, or equivalent. Experimental models and approaches used to address the fundamental processes of multicellular development. The course will cover foundational concepts, such as cell-type specification, morphogenesis, and growth coordination, as well as the next frontiers in developmental biology, organogenesis and regenerative medicine. Differential Tuition: $150. Course Fee: GS01 $90.
NDRB 5613. Neurodegenerative Disease. (3-0) 3 Credit Hours.
Prerequisite: NDRB 3433 and NDRB 3813, or consent of instructor.
NDRB 5433 and NDRB 5443 are recommended. The pathogenesis of
neurodegenerative diseases will be covered with an emphasis on the
molecular mechanisms and experimental approaches. Current research
progress will be covered. (Formerly BIO 5613. Credit cannot be earned for
both BIO 5613 and NDRB 5613.) Differential Tuition: $150. Course Fee:
GS01 $90.

NDRB 5643. Introduction to Bioinformatics. (3-0) 3 Credit Hours.
The ability to sequence and analyze genomes has transformed biology.
The genomic revolution has been made possible by the development
of bioinformatics tools that combine computation with principles of
molecular biology. In this course, students will learn how to use some
of the major bioinformatics tools and will examine a few genomes to
understand the vast amount of information present in them. (Same as
MMI 6643. Credit cannot be earned for both MMI 6643 and NDRB 5643.)
Differential Tuition: $150. Course Fee: GS01 $90.

NDRB 5673. Space and Time in the Brain. (3-0) 3 Credit Hours.
Prerequisite: NDRB 3433 or equivalent. Specific cells in the brain appear
to signal position in space as well as the passage of time, suggesting
that the brain uses common mechanisms to process space and time
while forming memories. In this course, students will be introduced to
the concepts of place cells, grid cells, and other spatial cells found within
and beyond the hippocampal formation. Differential Tuition: $150. Course
Fee: GS01 $90.

NDRB 5683. Neural Data Science. (3-0) 3 Credit Hours.
Prerequisite: MAT 1193, CS 1063 or DS 4013, STA 1403 or PSY
2073, and NDRB 2113, or equivalents. Analysis and interpretation of
neurophysiological data, such as spike trains and EEG traces recorded
from behaving animals or human subjects. While gaining hands-on
computer-programming experience, this course will examine how
neuroscientists use data analysis to investigate open questions.
Differential Tuition: $150. Course Fee: GS01 $90.

NDRB 5813. Frontiers in Human Pluripotent Stem Cells. (3-0) 3 Credit
Hours.
This course integrates the fundamental aspects of developmental
biology with emerging concepts in embryonic and adult stem cells and
regenerative medicine. A discussion of various stem cell applications
in industry, military, medicine, and ethics of regenerative medicine is
presented. (Formerly BIO 5813. Credit cannot be earned for both BIO 5813
and NDRB 5813.) Differential Tuition: $150. Course Fee: GS01 $90.

NDRB 5833. Membrane Structure and Function. (3-0) 3 Credit Hours.
Prerequisite: BIO 3513 or an equivalent. A study of the composition,
organization, transport functions, and permeability of natural and model
membranes. (Formerly BIO 5833. Credit cannot be earned for both BIO
5833 and NDRB 5833.) Differential Tuition: $150. Course Fee: GS01 $90.

NDRB 5971. Directed Research. (0-0) 1 Credit Hour.
Prerequisite: Admission to either the Biology or Biotechnology Master's
program or admission as a special graduate or non-degree-seeking
student, and permission in writing (form available) from the instructor
and the student's Graduate Advisor of Record. The directed research
course may involve either a laboratory or a theoretical problem. May be
repeated for credit, but not more than 6 hours, regardless of discipline, in
combination with NDRB 6951, NDRB 6952, and NDRB 6953 (Independent
Study), will apply to the Master's degree. Differential Tuition: $50. Course
Fee: GS01 $30.

NDRB 5972. Directed Research. (0-0) 2 Credit Hours.
Prerequisite: Admission to either the Biology or Biotechnology Master's
program or admission as a special graduate or non-degree-seeking
student, and permission in writing (form available) from the instructor
and the student's Graduate Advisor of Record. The directed research
course may involve either a laboratory or a theoretical problem. May be
repeated for credit, but not more than 6 hours, regardless of discipline, in
combination with NDRB 6951, NDRB 6952, and NDRB 6953 (Independent
Study), will apply to the Master's degree. Differential Tuition: $50 Course
Fee: GS01 $60.

NDRB 5973. Directed Research. (0-0) 3 Credit Hours.
Prerequisite: Admission to either the Biology or Biotechnology Master's
program or admission as a special graduate or non-degree-seeking
student, and permission in writing (form available) from the instructor
and the student's Graduate Advisor of Record. The directed research
course may involve either a laboratory or a theoretical problem. May be
repeated for credit, but not more than 6 hours, regardless of discipline, in
combination with NDRB 6951, NDRB 6952, and NDRB 6953 (Independent
Study), will apply to the Master's degree. Differential Tuition: $50 Course
Fee: GS01 $90.

NDRB 6233. Quantitative Biology. (3-0) 3 Credit Hours.
Prerequisite: Graduate Standing or consent of instructor. An introduction
of quantitative analysis of biological data and design of experiments.
Topics include probability theory and distributions, descriptive statistics,
hypothesis testing and confidence intervals for means, variances,
and proportions, chi-square statistic, categorical data analysis,
linear correlation and regression model, analysis of variance, and
nonparametric methods. (Same as BIO 6233. Credit cannot be earned for
both NDRB 6233 and BIO 6233.) Differential Tuition: $150. Course Fee:
GS01 $90; IUB1 $10.

NDRB 6313. Molecular Biology and Biophysics of Ion Channels. (3-0) 3
Credit Hours.
Prerequisite: NDRB 3433, or permission of instructor. A study of the
molecular composition and biophysical properties of ion channels. The
course emphasizes three families of ion channels: voltage-gated, ligand-
gated, and metabotropically-stimulated channels. Their structure and
function will be related to how ion channels mediate cellular actions in
excitable cells. (Formerly BIO 6313. Credit cannot be earned for both BIO
6313 and NDRB 6313.) Differential Tuition: $150. Course Fee:
GS01 $90.

NDRB 6483. Neurobiology of Animal Behavior. (3-0) 3 Credit Hours.
Prerequisite: NDRB 3433 or BIO 3413 or consent of instructor. This course
is designed to develop critical thinking skills while examining current
neurobiology research on the extrinsic and intrinsic factors influencing
animal behavior. The class will focus on behaviors that are relevant
models for human disorders. (Formerly BIO 6483. Credit cannot be earned for
both BIO 6483 and NDRB 6483.) Differential Tuition: $150. Course Fee:
GS01 $90; IUB1 $10.

NDRB 6643. Advanced Multicellular Bioinformatics. (3-0) 3 Credit Hours.
The ability to sequence and analyze genomes has transformed biology.
The genomic revolution has been made possible by the development
of bioinformatics tools that combine computation with principles of
molecular biology. In this course students will learn how to use some
of the major bioinformatics tools and will examine a few genomes to
understand the vast amount of information present in them. Differential
Tuition: $150. Course Fee: GS01 $90.
NDRB 6951. Independent Study. (0-0) 1 Credit Hour.
Prerequisite: Graduate standing and permission in writing of the instructor and the student's Graduate Advisor of Record. This course includes independent reading, research, discussion, and/or writing under the direction of a faculty member. For students needing specialized work not normally or not often available as part of the regular course offerings. May be repeated for credit, but not more than 6 hours, regardless of discipline, in combination with NDRB 5971, NDRB 5972, and NDRB 5973. Directed Research will apply to the Master's degree. Differential Tuition: $50. Course Fee: GS01 $30.

NDRB 6952. Independent Study. (0-0) 2 Credit Hours.
Prerequisite: Graduate standing and permission in writing of the instructor and the student's Graduate Advisor of Record. This course includes independent reading, research, discussion, and/or writing under the direction of a faculty member. For students needing specialized work not normally or not often available as part of the regular course offerings. May be repeated for credit, but not more than 6 hours, regardless of discipline, in combination with NDRB 5971, NDRB 5972, and NDRB 5973. Directed Research will apply to the Master's degree. Differential Tuition: $50. Course Fee: GS01 $60.

NDRB 6953. Independent Study. (0-0) 3 Credit Hours.
Prerequisite: Graduate standing and permission in writing of the instructor and the student's Graduate Advisor of Record. This course includes independent reading, research, discussion, and/or writing under the direction of a faculty member. For students needing specialized work not normally or not often available as part of the regular course offerings. May be repeated for credit, but not more than 6 hours, regardless of discipline, in combination with NDRB 5971, NDRB 5972, and NDRB 5973. Directed Research will apply to the Master's degree. Differential Tuition: $50. Course Fee: GS01 $90.

NDRB 6961. Comprehensive Examination. (0-0) 1 Credit Hour.
Prerequisite: Approval of the appropriate Graduate Program Committee to take the Comprehensive Examination. This is an independent study course for the purpose of taking the Comprehensive Examination. May be repeated as many times as approved by the Graduate Program Committee. Enrollment is required each term in which the Comprehensive Examination is taken if no other courses are being taken that term. The grade report for the course is either "CR" (satisfactory performance on the Comprehensive Examination) or "NC" (unsatisfactory performance on the Comprehensive Examination). Differential Tuition: $50. Course Fee: GS01 $30.

NDRB 6973. Special Problems. (3-0) 3 Credit Hours.
Prerequisite: Consent of instructor. An organized course offering the opportunity for specialized study not normally or not often available as part of the regular course offerings. Special Problems courses may be repeated for credit when the topics vary, but not more than 6 hours, regardless of discipline, may be applied to the Master's degree. Differential Tuition: $150. Course Fee: GS01 $90.

NDRB 6981. Masters Thesis. (0-0) 1 Credit Hour.
Prerequisite: Permission of the Graduate Advisor of Record and thesis director. Corequisites: Enrollment in NDRB 6981, NDRB 6982, or NDRB 6983 is required each term in which the thesis is in progress. Thesis research and preparation. May be repeated for credit, but not more than 6 hours will apply to the Master's degree. Credit will be awarded upon completion of the thesis. Differential Tuition: $50. Course Fee: GS01 $30.

NDRB 6982. Masters Thesis. (0-0) 2 Credit Hours.
Prerequisite: Permission of the Graduate Advisor of Record and thesis director. Corequisites: Enrollment in NDRB 6981, NDRB 6982, or NDRB 6983 is required each term in which the thesis is in progress. Thesis research and preparation. May be repeated for credit, but not more than 6 hours will apply to the Master's degree. Credit will be awarded upon completion of the thesis. Differential Tuition: $100. Course Fee: GS01 $60.

NDRB 6983. Masters Thesis. (0-0) 3 Credit Hours.
Prerequisite: Permission of the Graduate Advisor of Record and thesis director. Corequisites: Enrollment in NDRB 6981, NDRB 6982, or NDRB 6983 is required each term in which the thesis is in progress. Thesis research and preparation. May be repeated for credit, but not more than 6 hours will apply to the Master's degree. Credit will be awarded upon completion of the thesis. Differential Tuition: $150. Course Fee: GS01 $90.

NDRB 7041. Colloquium. (1-0) 1 Credit Hour.
Prerequisite: Graduate standing. This course will include oral presentations, discussions, critical evaluation of students' research in progress, or discussions of current journal articles or reviews of recent scientific advances. May be repeated for credit. The grade report for this course is either "CR" (satisfactory participation in the colloquium) or "NC" (unsatisfactory participation in the colloquium). Differential Tuition: $50. Course Fee: GS01 $30; IUB1 $10.

NDRB 7051. Seminar. (1-0) 1 Credit Hour.
Prerequisite: Graduate standing. Formal presentations of research by outside authorities in the biological sciences. May be repeated for credit. The grade report for this course is either "CR" (satisfactory participation in the seminar) or "NC" (unsatisfactory participation in the seminar). Differential Tuition: $50. Course Fee: GS01 $30; IUB1 $10.

NDRB 7113. Principles of Biological Scientific Teaching. (0-0) 3 Credit Hours.
Prerequisite: Admission to candidacy for the Doctoral degree. Required course for Neuroscience or Developmental Sciences doctoral students. The student will be trained on strategies to be an effective teacher in the classroom. The student will also be responsible for all aspects of leading a discussion section or laboratory course. Approval by the chair of the appropriate Doctoral Studies committee is required. Differential Tuition: $150. Course Fee: GS01 $90.

NDRB 7143. Principles of Biological Scientific Writing. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing. This course will provide an overview of scientific grant and manuscript preparation. The class will be directed toward producing a Ph.D. dissertation proposal and a predoctoral fellowship application. Differential Tuition: $150. Course Fee: GS01 $90.

NDRB 7211. Doctoral Research. (0-0) 1 Credit Hour.
Prerequisite: Admission to either the Neuroscience or Developmental Sciences doctoral program. May be repeated for credit, but no more than 52 hours may be applied to the Doctoral degree. Differential Tuition: $50. Course Fee: GS01 $30; IUB1 $0.

NDRB 7212. Doctoral Research. (0-0) 2 Credit Hours.
Prerequisite: Admission to either the Neuroscience or Developmental Sciences doctoral program. May be repeated for credit, but no more than 52 hours may be applied to the Doctoral degree. Differential Tuition: $100. Course Fee: GS01 $60; IUB1 $10.
NDRB 7213. Doctoral Research. (0-0) 3 Credit Hours.
Prerequisite: Admission to either the Neuroscience or Developmental and Regenerative Sciences doctoral program. May be repeated for credit, but no more than 52 hours may be applied to the Doctoral degree. Differential Tuition: $150. Course Fee: GS01 $90; IUB1 $10.

NDRB 7214. Doctoral Research. (0-0) 4 Credit Hours.
Prerequisite: Admission to either the Neuroscience or Developmental and Regenerative Sciences doctoral program. May be repeated for credit, but no more than 52 hours may be applied to the Doctoral degree. Differential Tuition: $200. Course Fee: GS01 $120; IUB1 $10.

NDRB 7215. Doctoral Research. (0-0) 5 Credit Hours.
Prerequisite: Admission to either the Neuroscience or Developmental and Regenerative Sciences doctoral program. May be repeated for credit, but no more than 52 hours may be applied to the Doctoral degree. Differential Tuition: $250. Course Fee: GS01 $150; IUB1 $10.

NDRB 7216. Doctoral Research. (0-0) 6 Credit Hours.
Prerequisite: Admission to either the Neuroscience or Developmental and Regenerative Sciences doctoral program. May be repeated for credit, but no more than 52 hours may be applied to the Doctoral degree. Differential Tuition: $300. Course Fee: GS01 $180; IUB1 $10.

NDRB 7311. Doctoral Dissertation. (0-0) 1 Credit Hour.
Prerequisite: Admission to candidacy for the Doctoral degree and completion of at least 18 semester credit hours of NDRB 7211, NDRB 7212, or NDRB 7213. May be repeated for credit. Differential Tuition: $50. Course Fee: GS01 $30; IUB1 $10.

NDRB 7312. Doctoral Dissertation. (0-0) 2 Credit Hours.
Prerequisite: Admission to candidacy for the Doctoral degree and completion of at least 18 semester credit hours of NDRB 7211, NDRB 7212, or NDRB 7213. May be repeated for credit. Differential Tuition: $100. Course Fee: GS01 $60; IUB1 $10.

NDRB 7313. Doctoral Dissertation. (0-0) 3 Credit Hours.
Prerequisite: Admission to candidacy for the Doctoral degree and completion of at least 18 semester credit hours of NDRB 7211, NDRB 7212, or NDRB 7213. May be repeated for credit. Differential Tuition: $150. Course Fee: GS01 $90; IUB1 $10.

NDRB 7314. Doctoral Dissertation. (0-0) 4 Credit Hours.
Prerequisite: Admission to candidacy for the Doctoral degree and completion of at least 18 semester credit hours of NDRB 7211, NDRB 7212, or NDRB 7213. May be repeated for credit. Differential Tuition: $200. Course Fee: GS01 $120.

NDRB 7315. Doctoral Dissertation. (0-0) 5 Credit Hours.
Prerequisite: Admission to candidacy for the Doctoral degree and completion of at least 18 semester credit hours of NDRB 7211, NDRB 7212, or NDRB 7213. May be repeated for credit. Differential Tuition: $250. Course Fee: GS01 $150; IUB1 $10.

NDRB 7316. Doctoral Dissertation. (0-0) 6 Credit Hours.
Prerequisite: Admission to candidacy for the Doctoral degree and completion of at least 18 semester credit hours of NDRB 7211, NDRB 7212, or NDRB 7213. May be repeated for credit. Differential Tuition: $300. Course Fee: GS01 $180; IUB1 $10.

NDRB 7571. Research Rotations. (0-2) 1 Credit Hour.
Prerequisite: Consent of instructor. Topics may include research methods in developmental biology, regenerative biology, cellular neuroscience, and systems neuroscience. May be repeated for credit as topics vary. Formerly "Experimental Techniques in Biology." Differential Tuition: $50. Course Fee: GS01 $30; IUB1 $10.

NDRB 7572. Experimental Techniques in Biology. (0-4) 2 Credit Hours.
Prerequisite: Consent of instructor. Topics may include research methods in developmental biology, regenerative biology, cellular neuroscience, and systems neuroscience. May be repeated for credit as topics vary. Formerly "Experimental Techniques in Biology." (Same as BIO 7572. Credit cannot be earned for both BIO 7572 and NDRB 7572.) Differential Tuition: $100. Course Fee: GS01 $60.