Department of Electrical and Computer Engineering

The Department of Electrical and Computer Engineering (ECE) offers a Bachelor of Science degree in Electrical Engineering (B.S. EE) and a Bachelor of Science degree in Computer Engineering (B.S. CpE). Individuals enrolled in these degree programs are given opportunities to develop a strong background in the engineering sciences and to learn the analysis, design, and synthesis tools necessary to function successfully as active participants in traditional, new, and emerging areas of electrical and computer engineering related technologies. The ECE department continues to be recognized locally and nationally for the quality of its undergraduate programs. As a result, ECE graduates continue to find high-paying jobs or are accepted into graduate schools nationwide.

Program Educational Objectives

The educational objectives of the Electrical Engineering program are that our graduates will:

1. contribute their technical knowledge to better their lives and society.
2. assume positions of leadership and responsibility in their electrical engineering related careers.
3. pursue graduate and professional studies.
4. conduct themselves in a professional manner that meets or exceeds the expectations of their employers.

The educational objectives of the Computer Engineering program are that our graduates will:

1. engage in life-long learning, remaining current and becoming leaders in their profession.
2. advance and expand in their computer engineering related careers by applying their engineering knowledge and skills.
3. contribute productively to the workforce in state, regional, national and international industries and government organizations.
4. communicate effectively, provide enabling solutions to societal challenges, and respond to technical, business, social, ethical, and human needs of the society through their professional endeavors.

Meeting Program Objectives

To meet the program objectives, the curriculum for the Bachelor of Science (B.S.) degree in Electrical Engineering and the curriculum for the Bachelor of Science degree in Computer Engineering are organized into a flexible 126-semester-credit-hour structure that provides high-quality education in the fundamentals of engineering, in addition to a thorough coverage of the major specialties within electrical engineering and computer engineering. For electrical engineering students, a selection of technical electives is provided to allow in-depth concentration in selected areas such as: communication; computer; digital signal processing (DSP); electronic materials and devices; systems and control; and electric power engineering. For students seeking the B.S. degree in Computer Engineering, the selection of technical electives are from areas of digital system design, computer architecture, VLSI design, engineering programming languages and embedded systems.

Department faculty of outstanding quality work in concert to provide the two degree programs that are challenging to students, with depth in engineering sciences, design orientation, and modern laboratory experience. The program objectives are accomplished via a three-tiered curriculum structure comprised of the lower-division core (the first two years), the upper-division core (concentrated primarily in the third year), and the senior-level electives, each of which are briefly described below.

Lower-Division Core

The lower-division core provides students with a diverse range of courses over a broad base of basic technical and specialized courses in mathematics, physics, and chemistry; computer hardware and software fundamentals; electric circuit fundamentals and electrical engineering laboratory experience; statics and dynamics; and communication skills, humanities, and social sciences.

Upper-Division Core

The upper-division core for electrical engineering and computer engineering provides students with a basic education in the fundamentals of electrical and computer engineering.

The upper-division core in electrical engineering includes: fundamentals of circuits (3 semester credit hours), controls (3 semester credit hours), electromagnetics (3 semester credit hours), electronics (6 semester credit hours), electronic devices (3 semester credit hours), and probability and random processes (3 semester credit hours). Many of these fundamental courses include the use of modern software tools for design and analysis. These fundamentals are supplemented with one hands-on laboratory course (3 semester credit hours). Written and technical communication is further emphasized in the laboratory course.

The upper-division core in computer engineering includes: fundamentals of circuits (3 semester credit hours), C++ and data structures (3 semester credit hours), microcomputer systems (3 semester credit hours), electronics (6 semester credit hours), electronic devices (3 semester credit hours), and probability and random processes (3 semester credit hours). Many of these fundamental courses include the use of modern software tools for design and analysis. These fundamental courses are supplemented with one hands-on laboratory course (3 semester credit hours). Written and technical communication is further emphasized in the laboratory course.

Senior-Level Electives

In the senior year, electrical engineering students enroll in five technical electives (15 semester credit hours), a senior laboratory course (3 semester credit hours), and the capstone design sequence (4 semester credit hours). Students in the technical elective courses have ample opportunities to learn and use modern software tools. The capstone sequence not only provides a major design experience but also emphasizes teamwork, proposal development, communication skills, and professional and ethical responsibility. Electrical engineering students are required to choose one of the six technical areas and to select a minimum of three technical electives (9 semester credit hours) from the chosen area. The remaining two technical electives (6 semester credit hours) may be selected either from the same area or from the other five areas, including one course at the graduate level and/or 3 semester credit hours from an engineering cooperative program. Computer engineering students are required to choose five technical electives from a list of approved technical electives for Bachelor of Science in Computer Engineering. The engineering cooperative program provides an opportunity for students to obtain practical experience by enrolling in...
three semesters (1 semester credit hour each semester) and working in an approved industry. Students who want to pursue graduate studies are encouraged to enroll in a graduate class during their last year, which will be counted as one of the remaining technical electives.

Engineering Design Experience

Design process in electrical engineering and in computer engineering is emphasized throughout all four years. Engineering design is distributed throughout the programs starting from the second semester in EE 2513 Logic Design. During their junior and senior years, students take five technical elective courses which all have design components. During the seventh semester, students also take EE 4113 Electrical and Computer Engineering Laboratory II, where they must design complex circuits. Modern software tools usage, design and analysis, and formal written report writing are integrated components of several of the electrical and computer engineering courses. EE 3113 Electrical and Computer Engineering Laboratory I and EE 4113 Electrical and Computer Engineering Laboratory II emphasize hands-on experiments using basic to advanced capability instruments and formal written, as well as oral, reports. In EE 4811 Electrical and Computer Engineering Design I, CPE 4811 Computer Engineering Design I, EE 4813 Electrical and Computer Engineering Design II, and CPE 4813 Computer Engineering Design II, students are required to design, implement, test, demonstrate and make an oral presentation on an electronic or computer system.

Other courses with design emphasis that electrical engineering students take include: EE 3213 Electromagnetic Engineering, EE 3323 Electronic Devices, EE 3413 Analysis and Design of Control Systems, EE 3463 Microcomputer Systems I, EE 4313 Electronic Circuits II, and EE 4323 Dielectric and Optoelectronic Engineering Laboratory.

Other courses with design emphasis that computer engineering students take include: EE 3313 Electronic Circuits I, EE 3323 Electronic Devices, EE 3463 Microcomputer Systems I, EE 3563 Digital Systems Design and EE 4513 Introduction to VLSI Design.

- B.S. degree in Electrical Engineering (p. 2)
- B.S. degree in Computer Engineering (p. 4)
- Integrated B.S./M.S. Program (p. 6)

Bachelor of Science Degree in Electrical Engineering

The Bachelor of Science (B.S.) degree in Electrical Engineering has concentrations in Communications; Computer Engineering; Digital Signal Processing (DSP); Electronic Materials and Devices; Systems and Control; and Electric Power Engineering. The program is accredited by the Engineering Accreditation Commission (EAC) of ABET. The B.S. degree in Electrical Engineering offers students the opportunity to prepare for careers in areas associated with electronics and microelectronics, digital systems, communications, digital signal and image processing, controls and robotics, computer-aided design (CAD), instrumentation, bioengineering, electric power engineering, and other traditional and emerging technology areas. Through the proper selection of elective courses (at least three technical elective courses must be selected from a single technical area) to augment required courses, successful students will develop a specialization pertinent to many of these areas that may lead to productive employment in the public or private sector with electronics companies, high-technology industries, and government agencies. The program will also provide the opportunity for students to develop an understanding of fundamentals and current issues important for future years of learning through such activities as graduate school, distance education, professional training, and membership in professional societies.

The minimum number of semester credit hours required for this degree is 126, at least 39 of which must be at the upper-division level. At least 42 of the required electrical engineering credits must be taken at UTSA. All candidates for this degree must fulfill the Core Curriculum requirements, the General Engineering requirements, and the Electrical Engineering requirements, which are listed below.

Core Curriculum Requirements (42 semester credit hours)

Students seeking the B.S. degree in Electrical Engineering must fulfill University Core Curriculum requirements in the same manner as other students. The courses listed below satisfy both major requirements and Core Curriculum requirements; however, if these courses are taken to satisfy both requirements, then students may need to take additional courses in order to meet the minimum number of semester credit hours required for this degree.

MAT 1214 may be used to satisfy the core requirement in Mathematics, as well as one of the General Engineering requirements. PHY 1943 and PHY 1963 may be used to satisfy the core requirement in Life and Physical Sciences, as well as two of the General Engineering requirements.

Core Curriculum Component Area Requirements (http://catalog.utsa.edu/undergraduate/bachelorsdegeregulations/degreerequirements/corecurriculumcomponentareaarequirements)

First Year Experience Requirement	3
Communication	6
Mathematics	3
Life and Physical Sciences	6
Language, Philosophy and Culture	3
Creative Arts	3
American History	6
Government-Political Science	6
Social and Behavioral Sciences	3
Component Area Option	3
Total Credit Hours	42

General Engineering Requirements

All degree-seeking candidates in engineering must complete the following 22 semester credit hours, as well as the Core Curriculum requirements and major requirements:

CHE 1103	General Chemistry I	3
EGR 2323	Applied Engineering Analysis I	3
MAT 1214	Calculus I	4
MAT 1224	Calculus II	4
or EGR 1324	Calculus II for Engineers	
PHY 1943	Physics for Scientists and Engineers I	4
& PHY 1951	and Physics for Scientists and Engineers I Laboratory	
Gateway Courses

Students pursuing the B.S. degree in Electrical Engineering must successfully complete each of the following Gateway Courses with a grade of “C-” or better in no more than two attempts. A student who is unable to successfully complete these courses within two attempts, including dropping a course with a grade of “W” or taking an equivalent course at another institution, will be required to change his or her major.

EE 1322 Introduction to Electrical and Computer Engineering
EGR 2323 Applied Engineering Analysis I
MAT 1214 Calculus I

Electrical Engineering Degree Requirements

All degree-seeking candidates in Electrical Engineering must complete the following semester credit hours, as well as the Core Curriculum requirements and General Engineering requirements:

A. Required Courses

1. Electrical Engineering courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 1322 Introduction to Electrical and Computer Engineering</td>
<td>2</td>
</tr>
<tr>
<td>EE 2423 Network Theory</td>
<td>3</td>
</tr>
<tr>
<td>EE 2511 Logic Design Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EE 2513 Logic Design</td>
<td>3</td>
</tr>
<tr>
<td>EE 3113 Electrical and Computer Engineering Laboratory I</td>
<td>3</td>
</tr>
<tr>
<td>EE 3213 Electromagnetic Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EE 3313 Electronic Circuits I</td>
<td>3</td>
</tr>
<tr>
<td>EE 3323 Electronic Devices</td>
<td>3</td>
</tr>
<tr>
<td>EE 3413 Analysis and Design of Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>EE 3424 Mathematics in Signals and Systems</td>
<td>4</td>
</tr>
<tr>
<td>EE 3463 Microcomputer Systems I</td>
<td>3</td>
</tr>
<tr>
<td>EE 4113 Electrical and Computer Engineering Laboratory II</td>
<td>3</td>
</tr>
<tr>
<td>EE 4313 Electronic Circuits II</td>
<td>3</td>
</tr>
<tr>
<td>EE 4811 Electrical and Computer Engineering Design I</td>
<td>1</td>
</tr>
<tr>
<td>EE 4813 Electrical and Computer Engineering Design II</td>
<td>3</td>
</tr>
<tr>
<td>EGR 2213 Statics and Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>EGR 3323 Applied Engineering Analysis II</td>
<td>3</td>
</tr>
</tbody>
</table>

2. Supporting courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 2073 Computer Programming with Engineering Applications</td>
<td>3</td>
</tr>
<tr>
<td>EE 3533 Probability and Stochastic Processes</td>
<td>3</td>
</tr>
</tbody>
</table>

Mathematics and Science Supporting Course: Select one from the following courses:

- BIO 1233 Contemporary Biology I
- CHE 1113 General Chemistry II
- MAT 2233 Linear Algebra
- MAT 3015 Foundations of Mathematics
- STA 3523 Mathematical Statistics

B. Electrical engineering elective courses

Select at least three courses from one of the following concentrations. Topics offered under EE 4953 Special Studies in Electrical Engineering may be approved as technical electives in the relevant concentration.

Communication Concentration

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 3523 Discrete Signals and Systems</td>
<td>15</td>
</tr>
<tr>
<td>EE 4613 Communication Systems</td>
<td></td>
</tr>
<tr>
<td>EE 4653 Digital Communications</td>
<td></td>
</tr>
<tr>
<td>EE 4673 Data Communication and Networks</td>
<td></td>
</tr>
<tr>
<td>EE 4683 Wireless Communications</td>
<td></td>
</tr>
<tr>
<td>EE 4693 Fiber Optic Communications</td>
<td></td>
</tr>
</tbody>
</table>

Computer Engineering Concentration

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 3223 C++ and Data Structures</td>
<td>3</td>
</tr>
<tr>
<td>EE 3233 Systems Programming for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>EE 3563 Digital Systems Design</td>
<td></td>
</tr>
<tr>
<td>EE 4243 Computer Organization and Architecture</td>
<td></td>
</tr>
<tr>
<td>EE 4513 Introduction to VLSI Design</td>
<td></td>
</tr>
<tr>
<td>EE 4553 VLSI Testing</td>
<td></td>
</tr>
<tr>
<td>EE 4583 Microcomputer Systems II</td>
<td></td>
</tr>
</tbody>
</table>

DSP Concentration

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 3523 Discrete Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>EE 4623 Digital Filtering</td>
<td></td>
</tr>
<tr>
<td>EE 4643 Digital Signal Processing</td>
<td></td>
</tr>
<tr>
<td>EE 4663 Digital Image Processing</td>
<td></td>
</tr>
</tbody>
</table>

Electronic Materials and Devices Concentration

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 3513 Electromechanical Systems</td>
<td>3</td>
</tr>
<tr>
<td>EE 4323 Dielectric and Optoelectronic Engineering Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>EE 4513 Introduction to VLSI Design</td>
<td></td>
</tr>
<tr>
<td>EE 4523 Introduction to Micro and Nanotechnology</td>
<td></td>
</tr>
<tr>
<td>EE 4543 Advanced Topics in Micro and Nanotechnology</td>
<td></td>
</tr>
</tbody>
</table>

Systems and Control Concentration

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 3523 Discrete Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>EE 3513 Electromechanical Systems</td>
<td></td>
</tr>
<tr>
<td>EE 4443 Discrete-Time and Computer-Controlled Systems</td>
<td>3</td>
</tr>
<tr>
<td>EE 4723 Intelligent Robotics</td>
<td></td>
</tr>
<tr>
<td>EE 4733 Intelligent Control</td>
<td></td>
</tr>
<tr>
<td>EE 4743 Embedded Control Systems</td>
<td></td>
</tr>
</tbody>
</table>

Electric Power Engineering Concentration

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 3513 Electromechanical Systems</td>
<td>3</td>
</tr>
<tr>
<td>EE 4123 Power Engineering Laboratory</td>
<td></td>
</tr>
<tr>
<td>EE 4753 Analysis of Power Systems</td>
<td></td>
</tr>
<tr>
<td>EE 4763 Power Electronics</td>
<td></td>
</tr>
<tr>
<td>EE 4773 Electric Drives</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 71

B.S. in Electrical Engineering – Recommended Four-Year Academic Plan

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIS 1203 Academic Inquiry and Scholarship (core)</td>
<td>3</td>
</tr>
<tr>
<td>CHE 1103 General Chemistry I</td>
<td>3</td>
</tr>
</tbody>
</table>
Bachelor of Science Degree in Computer Engineering

The Bachelor of Science (B.S.) degree in Computer Engineering gives the students the opportunity to acquire broad engineering skills and knowledge to enable them to design and implement computer and digital systems. The discipline of computer engineering includes topics such as logic design; digital systems design; discrete mathematics; computer organization; embedded systems design requiring assembly programming of microprocessors, high-level programming and interfacing of processors to other circuits; high-level digital design languages (HDL) and Field Programmable Gate Arrays (FPGA's); Very Large Scale Integrated (VLSI) circuit design; and fundamental electrical engineering, mathematics, and science. While the B.S. in CpE is not currently ABET accredited, as it is a newly established program in 2010, plans are underway for the accreditation of the program at the earliest opportunity.

The minimum number of semester credit hours required for this degree is 126, at least 39 of which must be at the upper-division level. At least 42 of the required computer engineering credits must be taken at UTSA. All candidates for this degree must fulfill the Core Curriculum requirements, the General Engineering requirements, and the Computer Engineering requirements, which are listed below.

Core Curriculum Requirements (42 semester credit hours)

Students seeking the B.S. degree in Computer Engineering must fulfill University Core Curriculum requirements in the same manner as other students. The courses listed below satisfy both major requirements and Core Curriculum requirements; however, if these courses are taken to satisfy both requirements, then students may need to take additional courses in order to meet the minimum number of semester credit hours required for this degree.

MAT 1214 may be used to satisfy the core requirement in Mathematics, as well as one of the General Engineering requirements. PHY 1943 and PHY 1963 may be used to satisfy the core requirement in Life and Physical Sciences, as well as two of the General Engineering requirements.

Core Curriculum Component Area Requirements (http://catalog.utsa.edu/undergraduate/bachelorsdegeregulations/ degreerequirements/corecurriculumcomponentarequirements)
General Engineering Requirements

All degree-seeking candidates in engineering must complete the following 22 semester credit hours, as well as the Core Curriculum requirements and major requirements:

- CHE 1103 General Chemistry I 3
- EGR 2323 Applied Engineering Analysis I 3
- MAT 1214 Calculus I 4
- MAT 1224 Calculus II 4
- or EGR 1324 Calculus II for Engineers
- PHY 1943 Physics for Scientists and Engineers I 4
- PHY 1951 and Physics for Scientists and Engineers I Laboratory
- PHY 1963 Physics for Scientists and Engineers II 4
- PHY 1971 and Physics for Scientists and Engineers II Laboratory

Total Credit Hours 22

Gateway Courses

Students pursuing the B.S. degree in Computer Engineering must successfully complete each of the following Gateway Courses with a grade of “C-” or better in no more than two attempts. A student who is unable to successfully complete these courses within two attempts, including dropping a course with a grade of “W” or taking an equivalent course at another institution, will be required to change his or her major.

- EE 1322 Introduction to Electrical and Computer Engineering
- EE 2513 Logic Design
- MAT 1214 Calculus I

Computer Engineering Degree Requirements

All degree-seeking candidates in Computer Engineering must complete the following semester credit hours, as well as the Core Curriulum requirements and General Engineering requirements:

A. Required courses

1. Electrical and Computer engineering courses:
- EE 1322 Introduction to Electrical and Computer Engineering 2
- EE 2423 Network Theory 3
- EE 2511 Logic Design Laboratory 1
- EE 2513 Logic Design 3
- EE 3113 Electrical and Computer Engineering Laboratory I 3
- EE 3223 C++ and Data Structures 3
- EE 3233 Systems Programming for Engineers 3
- EE 3313 Electronic Circuits I 3
- EE 3323 Electronic Devices 3
- EE 3424 Mathematics in Signals and Systems 4
- EE 3463 Microcomputer Systems I 3
- EE 3563 Digital Systems Design 3
- EE 4113 Electrical and Computer Engineering Laboratory II 3
- EE 4243 Computer Organization and Architecture 3
- CPE 4811 Computer Engineering Design I 1
- CPE 4813 Computer Engineering Design II 3
- EGR 3323 Applied Engineering Analysis II 3

2. Supporting courses
- CS 2073 Computer Programming with Engineering Applications 3
- CS 2233 Discrete Mathematical Structures 3
- EE 3533 Probability and Stochastic Processes 3

B. Computer engineering electives

Select five courses including one Mathematics from the following:

- EE 4513 Introduction to VLSI Design
- EE 4553 VLSI Testing
- EE 4563 FPGA-Based System Design
- EE 4583 Microcomputer Systems II
- EE 4593 Embedded System Design
- EE 4643 Digital Signal Processing
- EE 4663 Digital Image Processing
- EE 4953 Special Studies in Electrical and Computer Engineering (Computer Engineering related topics only)
- MAT 2233 Linear Algebra
- MAT 3013 Foundations of Mathematics
- MAT 3123 Fundamentals of Geometry

Total Credit Hours 71

B.S. in Computer Engineering – Recommended Four-Year Academic Plan

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIS 1203 Academic Inquiry and Scholarship (core)</td>
<td>3</td>
</tr>
<tr>
<td>EE 1322 Introduction to Electrical and Computer Engineering</td>
<td>2</td>
</tr>
<tr>
<td>CHE 1103 General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1214 Calculus I (core and major)</td>
<td>4</td>
</tr>
<tr>
<td>WRC 1013 Freshman Composition I (Q) (core)</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 2511 Logic Design Laboratory</td>
</tr>
<tr>
<td>EE 2513 Logic Design</td>
</tr>
<tr>
<td>CS 2073 Computer Programming with Engineering Applications</td>
</tr>
<tr>
<td>MAT 1224 Calculus II</td>
</tr>
<tr>
<td>PHY 1943 Physics for Scientists and Engineers I (core and major)</td>
</tr>
</tbody>
</table>
PHY 1951 Physics for Scientists and Engineers I Laboratory 1
WRC 1023 Freshman Composition II (Q) (core) 3

Second Year
Fall
CS 2233 Discrete Mathematical Structures 3
EE 2423 Network Theory 3
EGR 2323 Applied Engineering Analysis I 3
PHY 1963 Physics for Scientists and Engineers II (core and major) 3
PHY 1971 Physics for Scientists and Engineers II Laboratory 1

American History core 3

Spring
EE 3313 Electronic Circuits I 3
EE 3424 Mathematics in Signals and Systems 4
EE 3463 Microcomputer Systems I 3
EGR 3323 Applied Engineering Analysis II 3

American History core 3

Third Year
Fall
EE 3113 Electrical and Computer Engineering Laboratory I 3
EE 3223 C++ and Data Structures 3
EE 3323 Electronic Devices 3
EE 3563 Digital Systems Design 3

Language, Philosophy & Culture core 3

Spring
EE 3233 Systems Programming for Engineers 3
EE 3533 Probability and Stochastic Processes 3
EE 4243 Computer Organization and Architecture 3
POL 1013 Introduction to American Politics (core) 3

Technical elective 3

Fourth Year
Fall
CPE 4811 Computer Engineering Design I 1
EE 4113 Electrical and Computer Engineering Laboratory II 3
POL 1133 or 1213 Texas Politics and Society (core) 3
Technical elective 3
Technical elective 3
Creative Arts core 3

Spring
CPE 4813 Computer Engineering Design II 3
ECO 2023 Introductory Microeconomics (core) 3
Technical elective 3
Technical elective 3

Component Area Option core 3

Total Credit Hours: 126.0

Integrated Bachelor of Science/Master of Science Program

The integrated B.S./M.S. (Bachelor of Science and Master of Science) program administered by the Department of Electrical and Computer Engineering is designed to make possible for highly motivated and qualified B.S. students to obtain both an undergraduate degree and an advanced degree within an accelerated timeline. Through this program, motivated B.S. students can start working with the faculty advisors on research projects as early as in their senior year.

Program Admission Requirements

Applications to the B.S./M.S. program must be submitted after the completion of 75 but before 90 semester credit hours of coursework, usually when a student is enrolled in his or her junior year or in the sixth semester of the B.S. program.

The B.S./M.S. program applicants must have a minimum of 3.3 for both cumulative and major grade point averages. For qualified applicants, the department will waive the GRE examination requirement. To apply for the program, students need to:

- Apply online under the category of Integrated B.S./M.S. (B.S. in Electrical Engineering, or Computer Engineering, and M.S. in Electrical Engineering, Computer Engineering, or Advanced Materials Engineering); and
- Submit an official UTSA transcript and a Proposed Program of Study with an approval from B.S./M.S. advisors.

Submission of both recommendation letters and a personal statement is optional but highly recommended for consideration of scholarships.

Degree Requirements

B.S. Degree requirement: The current undergraduate degree programs in Electrical Engineering and Computer Engineering require 126 semester credit hours for completion with fifteen of these hours (five, 3-hour courses) as technical electives. Students accepted into the Integrated B.S./M.S. program will be required to complete 117 undergraduate credit hours and 9 graduate credit hours to replace three of the five undergraduate technical elective courses toward the B.S. degree, provided that students pass the corresponding challenge exams for the three undergraduate elective courses. The graduate courses include one of the required core graduate courses and two technical electives from the same concentration area. Students may enroll in a cross-listed course and take a challenge examination following UTSA’s challenge examination procedure (see Footnote 1) to earn undergraduate credits for the graduate course taken. Credits earned by challenging UTSA undergraduate courses by examination apply to Bachelor’s degree requirements as though the courses had been completed in the normal manner. Since a grade of “CR” is awarded, such courses are not included in the UTSA grade point average calculation.

A graduate core course taken as an undergraduate must be completed with a grade of “B” or better. If a grade lower than “B” is received, it can be counted as an undergraduate technical elective, but in order to stay in the Integrated B.S./M.S. program, a student must pass one of the graduate core courses with a grade of “B” or better. Undergraduate students not able to satisfy this requirement, or simply wishing to
voluntarily withdraw from the Integrated B.S./M.S. program, must use a combination of five undergraduate technical electives and graduate courses to satisfy the original 126-hour regular degree program requirement in order to receive their B.S. degree. Students continuing on in the Integrated B.S./M.S. program will receive their B.S. degrees once they have earned 117 undergraduate credit hours and 9 credit hours of technical elective courses by passing the challenge examinations. The 9 graduate credit hours taken as an undergraduate will be counted toward the M.S. degree requirement.

M.S. Degree requirement: A student enrolled in the Integrated B.S./M.S. program can graduate by completing requirements for a thesis or nonthesis (project) option.

(i) Thesis Option: Students must complete 30 credit hours including 6 hours of thesis work.

(ii) Nonthesis Option: Students must complete 33 credit hours including 3 hours of project work.

B.S./M.S. Classification

Once admitted to the Integrated B.S./M.S. program, students are allowed to take graduate courses as undergraduate students. Students admitted to the Integrated B.S./M.S. program will be reclassified from undergraduate to graduate student status when they have completed 126 semester credit hours of coursework (of any combination of graduate and undergraduate hours) toward their degrees. B.S./M.S. students can receive their B.S. degree upon completion of 126 semester credit hours, including those credited by passing the challenge examinations, at which point the program will certify the student’s eligibility to receive the B.S. degree and request the Graduate School to change the student status in the Student Information System.

Currently the **Challenging a UTSA Course policy** at UTSA applies only to undergraduate courses; thus, this mechanism is valid only if the same graduate course is cross-listed with an undergraduate course or until the procedure is extended to graduate courses.

Computer Engineering (CPE) Courses

CPE 4811. Computer Engineering Design I. (1-1) 1 Credit Hour.
Prerequisites: EE 3563 and concurrent enrollment in, or completion of, EE 3233 and EE 4113. Business planning and project management in engineering design; discussion of ethical and social issues in design; and selection of a design project, development of a detailed design proposal, and approval of a design project.

CPE 4813. Computer Engineering Design II. (3-2) 3 Credit Hours.
Prerequisites: EE 4113 and CPE 4811. Complex system design; advanced ATE; project management, proposals, status reporting, formal oral and written technical reports, and business plans; open-ended design project considering safety, reliability, environmental, economic, and other constraints; and ethical and social impacts.

CPE 4911. Independent Study. (0-0) 1 Credit Hour.
Prerequisites: Permission in writing (form available) from the instructor, the student’s advisor, the Department Chair, and Dean of the College. Independent reading, research, discussion, and/or writing under the direction of a faculty member. May be repeated for credit, but not more than 6 semester credit hours of independent study, regardless of discipline, will apply to a bachelor’s degree.

CPE 4912. Independent Study. (0-0) 2 Credit Hours.
Prerequisites: Permission in writing (form available) from the instructor, the student’s advisor, the Department Chair, and Dean of the College. Independent reading, research, discussion, and/or writing under the direction of a faculty member. May be repeated for credit, but not more than 6 semester credit hours of independent study, regardless of discipline, will apply to a bachelor’s degree.

CPE 4913. Independent Study. (0-0) 3 Credit Hours.
Prerequisites: Permission in writing (form available) from the instructor, the student’s advisor, the Department Chair, and Dean of the College. Independent reading, research, discussion, and/or writing under the direction of a faculty member. May be repeated for credit, but not more than 6 semester credit hours of independent study, regardless of discipline, will apply to a bachelor’s degree.

CPE 4953. Special Studies in Computer Engineering. (3-0) 3 Credit Hours.
Prerequisites vary with the topic (refer to the course syllabus on Bluebook or contact the instructor). An organized course offering the opportunity for specialized study not normally or not often available as part of the regular course offerings. Special Studies may be repeated for credit when topics vary, but not more than 6 semester credit hours, regardless of discipline, will apply to a bachelor’s degree.

Electrical Engineering (EE) Courses

EE 1322. Introduction to Electrical and Computer Engineering. (2-1) 2 Credit Hours. (TCCN = ENGR 1201)
Prerequisite: MAT 1073. An introduction to the electrical and computer engineering profession with emphasis on technical communication, team-based engineering design, professional and ethical responsibilities, contemporary issues, and software tools. One hour of recitation session per week. (Formerly EE 1323. Credit cannot be earned for both EE 1323 and EE 1322.)

EE 2213. Electric Circuits and Electronics. (3-0) 3 Credit Hours. (TCCN = ENGR 2305)
Prerequisites: PHY 1963 and concurrent enrollment in, or completion of, EGR 2323. Principles of electrical circuits and systems. Basic circuit elements (resistance, inductance, mutual inductance, capacitance, independent and dependent controlled voltage, and current sources). Topology of electrical networks; Kirchhoff’s laws; node and mesh analysis; DC circuit analysis; operational amplifiers; transient and sinusoidal steady-state analysis; AC circuit analysis; first- and second-order circuits; application of Laplace transforms to the analysis of RLC circuits. (Formerly EE 2214. Credit cannot be earned for both EE 2213 and EE 2214.) Generally offered: Fall, Spring.

EE 2423. Network Theory. (3-1) 3 Credit Hours.
Prerequisites: EE 1322 and completion of or concurrent enrollment in EGR 2323 and PHY 1963. Basic network principles; simple resistive circuits; steady state responses to DC and AC signals; node-voltage and mesh-current analysis; source transformations and superposition; Thevenin and Norton equivalents; natural and step transient responses of first and second order circuits; Laplace transform in circuit analysis; and use of SPICE to solve network problems. One hour of problem solving recitation per week. Generally offered: Fall, Spring, Summer.

EE 2511. Logic Design Laboratory. (1-2) 1 Credit Hour.
Prerequisite: Completion of or concurrent enrollment in EE 2513. Introduction to digital design techniques. Implementation of basic digital logic and hardware; combinational circuits, flip-flops, registers, sequential circuits and state-machines. Generally offered: Fall, Spring, Summer.
EE 2513. Logic Design. (3-1) 3 Credit Hours.
Prerequisites: EE 1322 and completion of or concurrent enrollment in CS 2073. Number systems, Boolean algebra, combinational and sequential circuit design; and minimization and implementation. One hour of problem solving recitation per week. Generally offered: Fall, Spring.

EE 3113. Electrical and Computer Engineering Laboratory I. (1-6) 3 Credit Hours.
Prerequisites: EE 2423, EE 2513, and completion of or concurrent enrollment in EE 3313. Introduction to basic measurement equipment and techniques; use of circuit simulation tools; comparison to empirical performance of simple circuits using discrete devices and circuits; simple subsystem circuit design; introduction to automated data acquisition; and laboratory technical communication. Generally offered: Fall, Spring.

EE 3213. Electromagnetic Engineering. (3-1) 3 Credit Hours.
Prerequisites: EGR 3323 and PHY 1963. Review of vector calculus, electrostatics, magnetostatics, electromodynamics, electromagnetic waves, dielectrics, boundary conditions, and RLC circuits. Selected other topics include wave guides, anisotropic crystal optics, transmission lines, fiber optics, reflection and refraction, and special relativity. One hour of problem solving recitation per week. Generally offered: Fall, Spring.

EE 3223. C++ and Data Structures. (3-1) 3 Credit Hours.
Prerequisite: EE 3463. Review of C++ non-OOP concepts, object-oriented programming, inheritance, virtual functions and polymorphism, and operator overloading. In-depth study of data structures including stacks, queues, linked lists, trees, binary trees and its application to binary search trees and sorting. One hour of problem solving recitation per week. Generally offered: Fall.

EE 3233. Systems Programming for Engineers. (3-1) 3 Credit Hours.
Prerequisite: EE 3223. Introduction to Linux, scripting languages including shell scripting, Perl, etc., programming in Python, software version control systems such as SVN and Git, and software testing tools. One hour of problem solving recitation per week.

EE 3313. Electronic Circuits I. (3-1) 3 Credit Hours.
Prerequisites: EE 2423 and PHY 1963. P-N junctions; diode circuits; BJTs and FETs; application to digital and analog circuits; and use of SPICE to solve simple circuits. One hour of problem solving recitation per week. Generally offered: Fall, Spring, Summer.

EE 3323. Electronic Devices. (3-0) 3 Credit Hours.
Prerequisites: CHE 1103 and EE 2423. Introduction to semiconductor materials, fundamentals of quantum mechanics and carrier phenomena, operating principles of P-N junction diodes, metal-semiconductor contacts (Schottky diodes), bipolar-junction transistors, field-effect transistors, photodetectors and optoelectronic devices. Generally offered: Fall, Spring.

EE 3413. Analysis and Design of Control Systems. (3-1) 3 Credit Hours.
Prerequisites: EE 3424 for electrical engineering majors (EGR 2213 for mechanical engineering majors). Modeling, analysis, and design of linear automatic control systems; time and frequency domain techniques; stability analysis, state variable techniques, and other topics. Control systems analysis and design software will be used. One hour of problem solving recitation per week. Generally offered: Fall, Spring, Summer.

EE 3424. Mathematics in Signals and Systems. (4-1) 4 Credit Hours.
Prerequisites: EE 2423 and EGR 2323. Basic concepts, mathematical representation of signals and systems, graphs of functions, elements of complex numbers, partial fraction expansion, properties of basic functions, including sinusoidal and complex exponential signals, phasors, time and amplitude transformations of signals, properties of signals and classification of systems, Dirac delta function, step function, convolution integral, impulse response, frequency response function for linear time invariant systems, differential-equation models, response to real sinusoidal signals, ideal filters, periodic functions and Fourier series, continuous-time Fourier transform, energy and power spectral density functions, Laplace transforms in linear system analysis, differential equations with constant coefficients, transfer functions and state-variable models. One hour of problem solving recitation per week. (Formerly EE 3423. Credit cannot be earned for both EE 3424 and EE 3423.)

EE 3463. Microcomputer Systems I. (3-1) 3 Credit Hours.
Prerequisites: EE 2513 and CS 2073. Introduction to assembly- and C-language programming; architecture, peripherals, operating system interfacing principles, and development tools; and software documentation techniques. One hour of recitation per week. Generally offered: Fall, Spring, Summer.

EE 3513. Electromechanical Systems. (3-0) 3 Credit Hours.
Prerequisite: EGR 2213. Principles of electromechanical energy conversion; polyphase circuits; dynamic analysis and simulation of energy-transfer devices; and power devices. Generally offered: Fall, Spring.

EE 3523. Discrete Signals and Systems. (3-0) 3 Credit Hours.
Prerequisite: EE 3424. Time and frequency characteristics of signals and systems, sampling, discrete-time convolution, and applications of discrete-time Fourier and Z-transforms to systems. MATLAB exercises. (Formerly titled "Signals and Systems II") Generally offered: Fall, Spring.

EE 3533. Probability and Stochastic Processes. (3-0) 3 Credit Hours.
Prerequisites: EE 3424 and EGR 2323. Probability and random variables, conditional distribution, conditional density function; operations on random variables; Central Limit Theorem; random process; spectral analysis of random processes; and linear systems with random inputs. (Formerly titled: "Random Signals and Noise") Generally offered: Fall, Spring.

EE 3563. Digital Systems Design. (2-3) 3 Credit Hours.
Prerequisites: EE 2511 and EE 2513. Introduction to switching theory; design of complex combinational and sequential circuits; analysis of hazards and fault detection, location, and tolerance; and design and verification of complex circuitry using schematic entry, functional modeling, and mixed-mode simulation. Generally offered: Fall, Spring.

EE 4113. Electrical and Computer Engineering Laboratory II. (1-6) 3 Credit Hours.
Prerequisites: EE 3113, and completion of or concurrent enrollment in either EE 3563 for computer engineering majors or EE 4313 for electrical engineering majors. Complex electronic circuit subsystem design, improving measurement system performance, impact of circuit parasitics, signal integrity, electromagnetic interference, thermal analysis, printed circuit board layout, and technical communication. Generally offered: Fall, Spring.

EE 4123. Power Engineering Laboratory. (1-4) 3 Credit Hours.
Prerequisites: EE 3113, completion of or concurrent enrollment in EE 4753 and EE 4763. Power Electronics Laboratory to analyze and test DC-DC converters, voltage mode and current mode control. Power Systems Simulation Laboratory to analyze and design power systems that include power flow, transmission line, transient and fault analysis.
EE 4243. Computer Organization and Architecture. (2-3) 3 Credit Hours.
Prerequisite: EE 3463. Design of advanced state machines and computer systems, and processor design using computer-assisted design and analysis tools. Generally offered: Spring.

EE 4313. Electronic Circuits II. (3-0) 3 Credit Hours.
Prerequisites: EE 3313 and concurrent enrollment in, or completion of, EE 3323. Multiple transistor circuits; feedback and frequency response analysis; operational amplifier analysis and design; and introduction to integrated circuit design and analysis. Design of analog and digital circuits; and use of SPICE to analyze complex circuits. Generally offered: Fall, Spring, Summer.

EE 4323. Dielectric and Optoelectronic Engineering Laboratory. (2-4) 3 Credit Hours.
Prerequisites: EE 3213, completion of or concurrent enrollment in EE 3323 for Topic 1. Principles of dielectric devices and optical components and systems. May be repeated for credit when topics vary. Topic 1: Capacitance, resistance, and inductance device evaluations, impedance frequency and temperature spectrum analysis, characterization of tunable dielectric microwave materials, electromechanical coupling of piezoelectric devices. Topic 2: Lasers, photo-detectors, phase locked interferometer, electro-optical and nonlinear optic devices, optical image processing, Fourier optics, holographic recording, and photorefractive storage. Generally offered: Spring.

EE 4443. Discrete-Time and Computer-Controlled Systems. (3-0) 3 Credit Hours.
Prerequisites: EE 3413 and completion of or concurrent enrollment in EE 3523. Sampled-data techniques applied to the analysis and design of digital control systems; stability criteria; compensation; and other topics. Generally offered: Fall.

EE 4513. Introduction to VLSI Design. (2-3) 3 Credit Hours.
Prerequisites: EE 3323 and EE 3463. Design of integrated digital systems; logic simulation, standard cell libraries, circuit simulation, and other computer-aided design tools; and integrated circuit processing and device modeling. Generally offered: Fall.

EE 4523. Introduction to Micro and Nanotechnology. (2-3) 3 Credit Hours.
Prerequisite: Completion of or concurrent enrollment in EE 3323. Survey of microfabrication techniques, scaling laws, mechanical, optical and thermal transducers, microfluidic applications, nanostructures. (Credit cannot be earned for both EE 4523 and PHY 4653.)

EE 4533. Principles of Microfabrication. (1-6) 3 Credit Hours.
Prerequisite: Completion of or concurrent enrollment in EE 3323. Photolithography, thin film deposition, doping, wet patterning, plasma etching, thin film characterization. Students will fabricate simple microstructures such as coplanar waveguides, microfluidic devices and nanopowder silica films.

EE 4543. Advanced Topics in Micro and Nanotechnology. (3-0) 3 Credit Hours.
Prerequisite: Completion of or concurrent enrollment in EE 3323. Topics to be selected from advanced sensors, actuators, engineered materials, device physics, microwave applications of MEMS structures, photonics, microelectronic devices, analog IC design, mixed-signal circuits and systems. May be repeated for credit when topics vary.

EE 4553. VLSI Testing. (2-3) 3 Credit Hours.
Prerequisite: EE 3463. Faults modeling and simulation; stuck at faults, bridging faults, and functional testing; self-testing concepts; standard and test patterns; device and system testing; and design for testability.

EE 4563. FPGA-Based System Design. (3-0) 3 Credit Hours.
Prerequisites: EE 3463 and EE 3563. FPGAs replace digital circuits in most applications. This course addresses underlying theory and applications: Introduction to Field Programmable Gate Arrays; General-Purpose FPGA Architecture; Reconfigurable Computing Devices and Systems; Hardware Description Language for FPGAs; synthesizing FPGA interconnections; Global Timing Constraints; evaluating and optimizing problems for FPGA implementations; Arithmetic, Precision Analysis & Floating Point; FPGA vs. CPU partitioning.

EE 4583. Microcomputer Systems II. (2-3) 3 Credit Hours.
Prerequisite: EE 3463. Advanced microprocessor-based system design; high-speed bus interfacing, coprocessors, and other specialized input/output devices; and high-level languages and software performance analysis. Generally offered: Spring.

EE 4593. Embedded System Design. (3-0) 3 Credit Hours.
Prerequisites: EE 3463 and EE 3563. The goal of this course is to develop a comprehensive understanding of the technologies behind embedded systems, particularly, those using computing elements: Embedded processor selection, hardware/firmware partitioning, circuit layout, circuit debugging, development tools, firmware architecture, firmware design, and firmware debugging. C programming of embedded microcontrollers, the function and use of common peripherals, and the programming and simulation (using VHDL/Verilog) of custom single-purpose processors.

EE 4613. Communication Systems. (3-0) 3 Credit Hours.
Prerequisites: EE 3424 and EE 3533. Basic theory and principles of modern analog and digital communication systems; signal and noise analysis, signal-to-noise ratio, and circuit implementations.

EE 4623. Digital Filtering. (3-0) 3 Credit Hours.
Prerequisite: EE 3424 and completion of or concurrent enrollment in EE 3463. Design and implementation of FIR and IIR filters, hardware, and software; and topics from adaptive filtering, neural networks. MATLAB exercises.

EE 4643. Digital Signal Processing. (3-0) 3 Credit Hours.
Prerequisites: Completion of or concurrent enrollment in EE 3523 and EE 3533. Transform techniques for discrete signal processing; discrete representation and analysis of digital filters and other topics; and A/D and D/A conversion and associated filtering techniques. Generally offered: Spring.

EE 4653. Digital Communications. (3-0) 3 Credit Hours.
Prerequisites: EE 3424 and EE 3533. Basic digital modulation schemes: ASK, BPSK, QPSK, FSK, and QAM modulation, binary signal detection, matched filtering, bit error rate, intersymbol interference, equalization, signal-space methods, optimum receiver, fundamentals of information theory and block coding, convolutional coding and spread spectrum.

EE 4663. Digital Image Processing. (3-0) 3 Credit Hours.
Prerequisite: EE 3523. Fundamentals and some practical applications of digital image processing. Topics include image formation, sampling, and quantization; image motion and detector noise; future extraction; image enhancement and restoration by spatial filtering and maximum entropy; image coding for bandwidth compression by DPCM; transform coding, subband coding; and use of MATLAB for image processing. Generally offered: Fall.

EE 4673. Data Communication and Networks. (2-3) 3 Credit Hours.
Prerequisites: EE 3223 and completion of or concurrent enrollment in EE 4613. Introduction to data communication networks, electrical interface, data transmission, WAN and LAN network overview, transmission devices, transmission errors and methods of correction, and protocols.
EE 4683. Wireless Communications. (3-0) 3 Credit Hours.

EE 4693. Fiber Optic Communications. (3-0) 3 Credit Hours.
Prerequisites: EE 3313, EE 3424, and completion of or concurrent enrollment in EE 3213. Light propagation using ray and electromagnetic mode theories, dielectric slab waveguides, optical fibers, attenuation and dispersion in optical fibers, optical fiber transmitters and receivers, electro-optical devices, and optical fiber measurement techniques.

EE 4723. Intelligent Robotics. (3-0) 3 Credit Hours.
Prerequisite: EE 3413 or ME 3543. Coordinate transformations, forward and inverse kinematics, Jacobian and static forces, path planning techniques, dynamics, design, analysis and control of robots, sensing and intelligence. (Formerly EGR 4723 and ME 4713. Credit cannot be earned for both EE 4723 and either EGR 4723 or ME 4713.) Generally offered: Spring.

EE 4733. Intelligent Control. (3-0) 3 Credit Hours.
Prerequisite: EE 3413. Neural networks and fuzzy logic basics, approximation properties, conventional adaptive controller design and analysis, intelligent controller design and analysis techniques for nonlinear systems, and closed-loop stability. Generally offered: Spring.

EE 4743. Embedded Control Systems. (2-3) 3 Credit Hours.
Prerequisites: EE 3413 and EE 3463. Embedded system principles and control system concepts, programming, tools and their applications, embedded controls design, and analysis of industrial processes.

EE 4753. Analysis of Power Systems. (3-0) 3 Credit Hours.
Prerequisite: EE 3413. Electric energy and environment, principles of power generation, transmission and distribution, power flow analysis, faults and transient stability analysis, power systems control and renewable energy systems. Generally offered: Fall.

EE 4763. Power Electronics. (3-0) 3 Credit Hours.
Prerequisites: EE 3113 and EE 3413. Switch-mode power conversion, analysis and control of DC-DC converters, DC-AC inverters for motor drives and to interface renewable energy sources with utility, AC-DC rectifiers, applications in sustainable energy systems, introduction to power semiconductor devices and magnetic components. Generally offered: Spring.

EE 4773. Electric Drives. (3-0) 3 Credit Hours.
Prerequisite: Completion of or concurrent enrollment in EE 3513. Analysis of electric machines in combination with power electronics; torque, speed and position control; space vectors, motor drive inverter; vector control; wind energy conversion. Generally offered: Fall.

EE 4811. Electrical and Computer Engineering Design I. (1-1) 1 Credit Hour.
Prerequisites: EE 4313 for Electrical Engineering majors or EE 3563 for Computer Engineering majors; and concurrent enrollment in, or completion of, EE 4113 for both EE and CPE majors, EE 3233 for CPE majors. Business planning and project management in engineering design; discussion of ethical and social issues in design; and selection of a design project, development of a detailed design proposal, and approval of a design project. Generally offered: Fall, Spring.