Department of Computer Science

The Department of Computer Science offers a Bachelor of Science degree in Computer Science with concentrations in cloud and systems, computer and information security, data science, and software engineering, and a Minor in Computer Science. The Department also offers the Certificate in Pathogenic Outbreak Investigations in collaboration with the Department of Biology and the Department of Information Systems and Cyber Security in the College of Business.

Admission Policy

The goal of the Department of Computer Science is to provide undergraduate students a program of study with the highest possible standards. To achieve this goal, the admission policy of the Department of Computer Science is designed to identify those students most likely to succeed in their undergraduate computer science education.

All applicants for admission to the Department of Computer Science must be qualified to take MAT 1093 Precalculus, or higher. Applicants who are not qualified should be admitted as an undeclared major (UND).

Applicants who are qualified to take MAT 1093 Precalculus, or higher, will be admitted to the Department as pre-computer science (PCS) students. In order to declare Computer Science as a major, a PCS student must satisfy the following criteria.

- Completion with a grade of "C-" or better of MAT 1214 Calculus I
- Completion with a grade of "C-" or better of CS 1713 Introduction to Computer Programming II and CS 1711 Introduction to Computer Programming II Recitation

A PCS student who fails to complete the criteria to change the major to CS within two years from the date of admission to the Department of Computer Science will be changed from PCS to undeclared (UND) in the University student record system. The student must choose a major other than computer science. A computer science minor is, however, available to all UTSA students who seek to complement a different academic major with a strong foundation in computer science.

Bachelor of Science Degree in Computer Science

The Bachelor of Science degree in Computer Science is designed to prepare students with a strong technical emphasis on modern computing and systems. The degree program offers students the opportunity to prepare for advanced graduate study and for careers in high-technology companies, business, government, and teaching. The department offers concentrations in Cloud and Systems, Computer and Information Security, Data Science, and Software Engineering.

The Bachelor of Science degree in Computer Science requires a minimum of 120 semester credit hours, including the Core Curriculum requirements. Thirty-nine of the total semester credit hours required for the degree must be at the upper-division level.

All majors in computer science are required to complete all required and elective computer science courses with a grade of "C-" or better.

All candidates seeking this degree must fulfill the Core Curriculum requirements and the degree requirements, which are listed below.

Core Curriculum Requirements (42 semester credit hours)

Students seeking the Bachelor of Science degree in Computer Science must fulfill University Core Curriculum requirements in the same manner as other students. The course listed below will satisfy both degree requirements and Core Curriculum requirements; however, if this course is taken to satisfy both requirements, then students may need to take an additional course in order to meet the minimum number of semester credit hours required for this degree.

MAT 1214 may be used to satisfy the core requirement in Mathematics as well as a major requirement.

Core Curriculum Component Area Requirements (http://catalog.utsa.edu/undergraduate/bachelorsdegreeregulations/dreerequirements/corecurriculumcomponentarearequirements)

- First Year Experience Requirement: 3
- Communication: 6
- Mathematics: 3
- Life and Physical Sciences: 6
- Language, Philosophy and Culture: 3
- Creative Arts: 3
- American History: 6
- Government-Political Science: 6
- Social and Behavioral Sciences: 3
- Component Area Option: 3
- Total Credit Hours: 42

Gateway Courses

Students pursuing the Bachelor of Science degree in Computer Science must successfully complete each of the following Gateway Courses with a grade of “C-” or better in no more than two attempts. A student who is unable to successfully complete these courses within two attempts, including dropping a course with a grade of “W” or taking an equivalent course at another institution, will be required to change his or her major.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1713</td>
<td>Introduction to Computer Programming II</td>
<td>3</td>
</tr>
<tr>
<td>CS 1711</td>
<td>Introduction to Computer Programming II</td>
<td>4</td>
</tr>
<tr>
<td>CS 2123</td>
<td>Data Structures</td>
<td>3</td>
</tr>
<tr>
<td>CS 2121</td>
<td>Data Structures Recitation</td>
<td>4</td>
</tr>
<tr>
<td>CS 1083</td>
<td>Introduction to Programming I for Computer Scientists</td>
<td>3</td>
</tr>
<tr>
<td>CS 1713 & CS 1711</td>
<td>Introduction to Computer Programming II & Recitation</td>
<td>4</td>
</tr>
<tr>
<td>CS 2233</td>
<td>Discrete Mathematical Structures</td>
<td>3</td>
</tr>
<tr>
<td>CS 3333</td>
<td>Mathematical Foundations of Computer Science</td>
<td>3</td>
</tr>
</tbody>
</table>

Degree Requirements

A. Required courses (this also satisfies the 3 hours of Core Curriculum requirements for Mathematics):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1083</td>
<td>Introduction to Programming I for Computer Scientists</td>
<td>3</td>
</tr>
<tr>
<td>CS 1713 & CS 1711</td>
<td>Introduction to Computer Programming II & Recitation</td>
<td>4</td>
</tr>
<tr>
<td>CS 2123 & CS 2121</td>
<td>Data Structures & Data Structures Recitation</td>
<td>4</td>
</tr>
<tr>
<td>CS 2233</td>
<td>Discrete Mathematical Structures</td>
<td>3</td>
</tr>
<tr>
<td>CS 3333</td>
<td>Mathematical Foundations of Computer Science</td>
<td>3</td>
</tr>
</tbody>
</table>
Department of Computer Science

CS 3343 Analysis of Algorithms 4
& CS 3341 and Analysis of Algorithms Recitation

CS 3423 Systems Programming 4
& CS 3421 and Systems Programming Recitation

CS 3443 Application Programming 3
CS 3723 Programming Languages 3
CS 3733 Operating Systems 4
& CS 3731 and Operating Systems Recitation

CS 3843 Computer Organization 4
& CS 3841 and Computer Organization Recitation
CS 3853 Computer Architecture 4
& CS 3851 and Computer Architecture Recitation

MAT 1214 Calculus I (The student who is not prepared for MAT 1214 must take MAT 1093 Precalculus.) 4
MAT 1224 Calculus II 4

B. Upper-Division computer science courses

With prior written approval of the Undergraduate Advisor of Record, 24 students may take upper-division MAT or STA courses to satisfy up to 6 hours of this requirement. A student with a cumulative grade point average of 3.0 or better may enroll in graduate courses and apply the credits earned toward satisfying this requirement. Enrollment in graduate courses requires prior written approval as described in chapter 1 (Bachelor’s Degree Regulations) of this catalog.

C. Free electives

Electives 6

Total Credit Hours 81

Concentration in Cloud and Systems

Students may declare a Concentration in Cloud and Systems after completing CS 3423 Systems Programming with a grade of "C-" or better. All candidates for the Concentration in Cloud and Systems must fulfill the Core Curriculum requirements and the Computer Science degree requirements including, as part of the upper-division computer science electives in item B in the degree requirements, the following two courses:

CS 4843 Introduction to Cloud Computing 3
CS 4853 Systems Development and Programming 3

plus two additional courses selected from the following:

CS 3873 Computer Networks 3
CS 4633 Simulation 3
CS 4713 Compiler Construction 3
CS 4823 Introduction to Parallel Programming 3
CS 4833 Embedded Systems 3
CS 4863 Distributed Computing and Systems 3
CS 4973 Advanced Topics in Data Science 3

Concentration in Computer and Information Security

Students may declare a Concentration in Computer and Information Security after completing CS 3423 Systems Programming with a grade of "C-" or better. All candidates for the Concentration in Computer and Information Security must fulfill the Core Curriculum requirements and the Computer Science degree requirements including, as part of the upper-

- CS 3433 Principles of Computer and Information Security 3
- CS 4353 Unix and Network Security 3
- CS 4363 Cryptography 3

Concentration in Data Science

Students may declare a Concentration in Data Science after completing CS 3343 Analysis of Algorithms with a grade of "C-" or better. All candidates for the Concentration in Data Science must fulfill the Core Curriculum requirements and the Computer Science degree requirements including, as part of the upper-division computer science electives in item B in the degree requirements, the following course:

CS 3753 Introduction to Data Science 3

plus two additional courses selected from the following:

- CS 3743 Introduction to Database Systems 3
- CS 4223 Bioinformatics and Big Data 3
- CS 4233 Introduction to Computational Biology and Bioinformatics 3
- CS 4373 Introduction to Data Mining 3
- CS 4973 Advanced Topics in Data Science 3

Concentration in Software Engineering

Students may declare a Concentration in Software Engineering after completing CS 3443 Application Programming with a grade of "C-" or better. All candidates for the Concentration in Software Engineering must fulfill the Core Curriculum requirements and the Computer Science degree requirements including, as part of the upper-division computer science electives in item B in the degree requirements, the following course:

CS 3773 Software Engineering 3

plus two additional courses selected from the following:

- CS 4393 User Interfaces 3
- CS 4723 Software Validation and Quality Assurance 3
- CS 4733 Project Management 3
- CS 4743 Enterprise Software Engineering 3
- CS 4773 Object-Oriented Systems 3
- CS 4783 Advanced Software Engineering 3

Course Sequence Guide for B.S. Degree in Computer Science

This course sequence guide is designed to assist students in completing their UTSA undergraduate Computer Science degree requirements. This is merely a guide and students must satisfy other requirements of this catalog and meet with their academic advisor for individualized degree plans. Progress within this guide depends upon such factors as course availability, individual student academic preparation, student time management, work obligations, and individual financial considerations. Students may choose to take courses during Summer terms to reduce course loads during long semesters.
B.S. in Computer Science – Recommended Four-Year Academic Plan

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>AIS 1203</td>
<td>Academic Inquiry and Scholarship (core)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 1083</td>
<td>Introduction to Programming I for Computer Scientists</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MAT 1214</td>
<td>Calculus I (core and major)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>WRC 1013</td>
<td>Freshman Composition I (Q) (core)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Creative Arts core</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>CS 1713</td>
<td>Introduction to Computer Programming II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& CS 1711</td>
<td>& Introduction to Computer Programming II Recitation</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MAT 1224</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>POL 1133 or 1213</td>
<td>Texas Politics and Society (core)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>WRC 1023</td>
<td>Freshman Composition II (Q) (core)</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CS 2123</td>
<td>Data Structures</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& CS 2121</td>
<td>& Data Structures Recitation</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>POL 1013</td>
<td>Introduction to American Politics (core)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Free elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Life & Physical Sciences core</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Social & Behavioral Sciences core</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>CS 2233</td>
<td>Discrete Mathematical Structures</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 3333</td>
<td>Mathematical Foundations of Computer Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 3443</td>
<td>Application Programming</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Life & Physical Sciences core</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Free elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CS 3423</td>
<td>Systems Programming</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& CS 3421</td>
<td>& Programming Languages</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 3723</td>
<td>Programming Languages</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CS 3843</td>
<td>Computer Organization</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& CS 3841</td>
<td>& Computer Organization</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Upper-division CS elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>CS 3343</td>
<td>Analysis of Algorithms</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& CS 3341</td>
<td>& Operating Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CS 3733</td>
<td>Computer Architecture</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& CS 3731</td>
<td>& Computer Architecture</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CS 3853</td>
<td>Computer Architecture</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& CS 3851</td>
<td>& Computer Architecture</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Upper-division CS elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CS 1083</td>
<td>Introduction to Programming I for Computer Scientists</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Upper-division CS elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td>American History core</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Language, Philosophy & Culture core</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper-division CS elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper-division CS elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper-division CS elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours: 120.0

Note: Some courses are only offered once a year; Fall or Spring. Check with the Department of Computer Science for scheduling of courses.

Minor in Computer Science

All students pursuing the Minor in Computer Science must complete 20 credit hours. All required and elective courses must be completed with a grade of "C-" or better.

A. Required courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1083</td>
<td>Introduction to Programming I for Computer Scientists</td>
<td>3</td>
</tr>
<tr>
<td>CS 1713</td>
<td>Introduction to Computer Programming II</td>
<td>4</td>
</tr>
<tr>
<td>CS 1711</td>
<td>Introduction to Computer Programming II Recitation</td>
<td>4</td>
</tr>
<tr>
<td>CS 2123</td>
<td>Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>CS 2121</td>
<td>Data Structures Recitation</td>
<td>4</td>
</tr>
</tbody>
</table>

B. CS core courses or approved CS electives

Select 9 hours of additional CS core courses or approved CS electives, at least 6 hours of which must be at the upper-division level

Total Credit Hours: 20

To declare a Minor in Computer Science, obtain advice, or seek approval of substitutions for course requirements, students should consult with their academic advisor.

Certificate in Pathogenic Outbreak Investigations

This interdisciplinary certificate program is designed for students in biology, information systems and cyber security, computer science and computer engineering disciplines to investigate biological and digital pathogen identification, propagation prediction, and mitigation. The required capstone project reinforces the cross-disciplinary learning fostered by the program and provides real-world practice.

This certificate is open only to biology, information systems and cyber security, computer science, and computer engineering majors. To apply for the Pathogenic Outbreak Investigations certificate, students should consult with the Director of the Office of Undergraduate Research for specific information about certificate requirements and consult with their academic advisors to verify that they have met all University requirements. All courses used to satisfy the requirements of this undergraduate certificate program must be college-level courses taken at UTSA. Students must fulfill all prerequisite requirements for elective courses.

Students pursuing the Certificate in Pathogenic Outbreak Investigations must complete a minimum of 15 semester credit hours:
A. Courses required by all majors:

Topic: Introduction to Pathogenic Outbreak Investigations: 3
- BIO 4953 Special Studies in Biology
- or CS 4953 Special Studies in Computer Science
- or IS 4953 Special Studies in Information Systems

Topic: Advanced Research in Pathogenic Outbreak Investigations: 3
- BIO 4953 Special Studies in Biology
- or CS 4953 Special Studies in Computer Science
- or IS 4953 Special Studies in Information Systems

B. Required course according to major: 3
- BIO 3713 Microbiology
- CS 4953 Special Studies in Computer Science (Topic: Cloud-oriented Big Data and Software Engineering)
- IS 4953 Special Studies in Information Systems (Topic: Malware Agent Analysis)

C. Elective courses for each major. Select 6 hours from one of the following groups depending on major:

Biology elective options
- BIO 3513 Biochemistry
- BIO 3743 Bacteriology
- BIO 4743 Immunology
- BIO 5762 Fundamentals of Immunology for Biotechnology
- BIO 6973 Special Problems (Comparative Genomics)
- BIO 6973 Special Problems (Microbial Genomics)

Information Systems/Cyber Security elective options
- IS 3523 Intrusion Detection and Incident Response
- IS 4463 Web Application Security
- IS 4483 Digital Forensic Analysis I
- IS 4523 Digital Forensic Analysis II
- IS 4513 Cyber and Physical Systems

Computer Science elective options
- CS 3753 Introduction to Data Science
- CS 4223 Bioinformatics and Big Data
- CS 4353 Unix and Network Security
- CS 4373 Introduction to Data Mining
- CS 4593 Topics in Computer Science
- CS 4843 Introduction to Cloud Computing
- CS 4963 Advanced Topics in Systems and Cloud
- CS 4973 Advanced Topics in Data Science

Total Credit Hours 15

1 Undergraduate biology students are permitted to take graduate courses based on need, student background/capability, and instructor consent.

Computer Science (CS) Courses

CS 1023. Cultural Implications of the Information Society. (3-0) 3 Credit Hours.
This course offers an examination of the modern information society and the influences of technological advances on society and culture. The emphasis is on information and its management from ethical, social, and legal perspectives. Students will make extensive use of the World Wide Web. Generally offered: Fall, Spring.

CS 1033. Microcomputer Applications. (3-0) 3 Credit Hours.
Study of the uses of the computer and the organization and visualization of data. Topics will be selected from library searching, networking, e-mail, spreadsheets, databases, authoring packages, multimedia and hyper text applications, presentation graphics, and legal/ethical issues. May not be applied toward a major in computer science. (Formerly CS 2083. Credit cannot be earned for both CS 1033 and CS 2083.) Generally offered: Spring.

CS 1063. Introduction to Computer Programming I. (3-0) 3 Credit Hours. (TCCN = COSC 1336)
Prerequisite: MAT 1073 or the equivalent. An introduction to computer programming using a modern object-oriented computer language. Topics include assignment, decisions, loops, methods and arrays using objects. Generally offered: Fall, Spring, Summer.

CS 1083. Introduction to Programming I for Computer Scientists. (3-0) 3 Credit Hours. (TCCN = COSC 1336)
Prerequisite: MAT 1073 or the equivalent. An introduction to computer programming emphasizing structured programming, problem solving, and algorithmic thinking. Topics include assignment, decisions, loops, methods, arrays, and use of objects. Students intending to major or minor in Computer Science should take this course instead of CS 1063.

CS 1143. Web Design. (3-0) 3 Credit Hours.
Prerequisite: Computer literacy. Introduction to the process of planning, designing, and building a Web site. Concepts required to design and build interactive Web sites, including page design using XHTML, tables, CSS, and JavaScript. Design tools will be used to design and maintain Web sites.

CS 1153. Game Programming. (3-0) 3 Credit Hours.
Prerequisite: Computer literacy. Introduction to game design and programming. Common practices used in the video game industry today will also be introduced. Students will learn the basics of creating a PC game through lecture material, hands-on laboratories, and a final project in which the students will build a simple game. Generally offered: Fall.

CS 1173. Data Analysis and Visualization. (3-0) 3 Credit Hours.
Prerequisite: MAT 1023. Introduction to computation for data analysis and visualization in a programming language such as MATLAB or R. Programming concepts including functions, scripting, loops and logic, handling of vectors and structured data are explored in the context of working with and plotting real data. May be applied toward the Core Curriculum requirement in the Component Area Option. (Formerly titled “Computation for Scientists and Engineers:") Generally offered: Fall, Spring, Summer.

CS 1711. Introduction to Computer Programming II Recitation. (1-0) 1 Credit Hour. (TCCN = COSC 1437)
Prerequisite: CS 1083. Concurrent enrollment in CS 1713 is required. Recitation to accompany CS 1713. (Formerly titled “Introduction to Computer Science Recitation.”) Generally offered: Fall, Spring, Summer.

CS 1713. Introduction to Computer Programming II. (3-0) 3 Credit Hours. (TCCN = COSC 1437)
Prerequisite: CS 1083. Concurrent enrollment in CS 1711 is required. Extended programming concepts including multidimensional arrays, pointers, dynamic memory allocation/deallocation and recursion. Problem solving methods, algorithm development and implementation. (Formerly titled “Introduction to Computer Science.") Generally offered: Fall, Spring, Summer.
CS 2073. Computer Programming with Engineering Applications. (3-0) 3 Credit Hours. (TCCN = ENGR 2304)
Prerequisites: MAT 1214 and completion of or concurrent enrollment in MAT 1224. Algorithmic approaches to problem solving and computer program design for engineers. Engineering and mathematically-oriented problem sets will be emphasized, including nonnumeric applications. Searching, sorting, linked lists, and data typing will be introduced. May not be applied toward a major in computer science. Generally offered: Fall, Spring.

CS 2121. Data Structures Recitation. (1-0) 1 Credit Hour. (TCCN = COSC 2436)
Prerequisite: CS 1713. Concurrent enrollment in CS 2123 is required. Recitation to accompany CS 2123. (Formerly CS 1721. Credit cannot be earned for both CS 2121 and CS 1721.) Generally offered: Fall, Spring, Summer.

CS 2123. Data Structures. (3-0) 3 Credit Hours. (TCCN = COSC 2436)
Prerequisite: CS 1713. Concurrent enrollment in CS 2121 is required. Abstract data structures (stacks, queues, lists, trees), recursion, sorting, and searching. Implementation of data structures using explicit memory management, and introduction to abstract data type design and encapsulation. (Formerly CS 1723. Credit cannot be earned for both CS 2123 and CS 1723.) Generally offered: Fall, Spring, Summer.

CS 2153. Game Design. (3-0) 3 Credit Hours.
Prerequisites: CS 1153. This course builds upon the lessons learned in CS 1153 Game Programming to examine in more detail the design and development of electronic games. The fundamentals of game design and development of electronic games. The fundamentals of game design will be examined in detail and the students will be responsible for building a game using a popular game engine.

CS 2233. Discrete Mathematical Structures. (3-0) 3 Credit Hours. (TCCN = MATH 2305)
Prerequisites: CS 1713 and MAT 1214. Survey and development of theoretical tools suitable for describing algorithmic applications. Propositional and predicate calculus, proofs, induction, order notation, recurrences and discrete structures. (Formerly 3233. Credit cannot be earned for both CS 2233 and CS 3233.) Generally offered: Fall, Spring, Summer.

CS 3333. Mathematical Foundations of Computer Science. (3-0) 3 Credit Hours.
Prerequisites: CS 1713 and MAT 1224. Survey and development of mathematical and statistical tools suitable for describing algorithmic applications. Vectors, matrices, combinatorics, probability and statistical models. Generally offered: Fall, Spring, Summer.

CS 3341. Analysis of Algorithms Recitation. (1-0) 1 Credit Hour.
Prerequisites: CS 2123, CS 2233, and CS 3333. Concurrent enrollment in CS 3343 is required. Recitation to accompany CS 3343. Generally offered: Fall, Spring, Summer.

CS 3343. Analysis of Algorithms. (3-0) 3 Credit Hours.
Prerequisites: CS 2123, CS 2233, and CS 3333. Concurrent enrollment in CS 3343 is required. Analysis of the performance of algorithms; discussion of programming techniques and data structures used in the writing of effective algorithms. Generally offered: Fall, Spring.

CS 3421. Systems Programming Recitation. (1-0) 1 Credit Hour.
Prerequisite: CS 2123. Concurrent enrollment in CS 3423 is required. Recitation to accompany CS 3423. (Formerly CS 2411. Credit cannot be earned for both CS 3421 and CS 2411.) Generally offered: Fall, Spring.

CS 3423. Systems Programming. (3-0) 3 Credit Hours.
Prerequisite: CS 2123. Concurrent enrollment in CS 3421 is required. A study of systems-level programming in a specific system (at present, Unix). Focus on concepts and tools to support the construction of systems programs. (Formerly CS 2413. Credit cannot be earned for both CS 3423 and CS 2413.) Generally offered: Fall, Spring.

CS 3433. Principles of Computer and Information Security. (3-0) 3 Credit Hours.
Prerequisite: CS 3423. An introduction to the protection of computer systems and networks. Topics will include authentication, access controls, malicious software, formal security methods, firewalls, intrusion detection, cryptography and information hiding, risk management, computer forensics, and ethics. Generally offered: Fall.

CS 3443. Application Programming. (3-0) 3 Credit Hours.
Prerequisite: CS 2123. Advanced application development in a current object-oriented language. Introduction to the software life cycle, best programming practices, and modern development tools. Generally offered: Fall, Spring.

CS 3723. Programming Languages. (3-0) 3 Credit Hours.
Prerequisites: CS 2233 and CS 3443. An introduction to high-level procedural, functional, and object-oriented programming languages, their theoretical foundations, organization, and implementation. Topics include formal syntax, compilers and interpreters, type systems, scoping and activation records, control structures, and data abstraction. Generally offered: Fall, Spring.

CS 3731. Operating Systems Recitation. (1-0) 1 Credit Hour.
Prerequisites: CS 3423, CS 3443, and CS 3843. Concurrent enrollment in CS 3733 is required. Recitation to accompany CS 3733. Generally offered: Fall, Spring.

CS 3733. Operating Systems. (3-0) 3 Credit Hours.
Prerequisites: CS 3423, CS 3443, and CS 3843. Concurrent enrollment in CS 3731 is required. An introduction to the functions and major techniques of a modern multiprogramming operating system. Includes exposure to the fundamentals of processor management, process synchronization, memory management, and peripheral management. Generally offered: Fall, Spring.

CS 3743. Introduction to Database Systems. (3-0) 3 Credit Hours.
Prerequisites: CS 2233 and CS 3423. Study of fundamentals of database systems. Topics include basic concepts, various data models, database design, storage systems, indexing and hashing, database application design and implementation, and commercially available database systems.

CS 3753. Introduction to Data Science. (3-0) 3 Credit Hours.
Prerequisites: CS 2123, CS 2233, and CS 3333. Study of fundamental methods and models of data science. Topics include data management, Extract-Transform-Loading methods, machine learning models, and data visualization. Use of a specialized programming language is emphasized.

CS 3773. Software Engineering. (3-0) 3 Credit Hours.
Prerequisite: CS 3443. Introduction to different aspects of software engineering with the concentration on processes, methods, and tools for developing reliable software-centered systems. Study of software development process models, project management, a variety of modeling notations, requirement analysis, architecture design methods, and testing techniques. Generally offered: Fall, Spring.

CS 3793. Introduction to Artificial Intelligence. (3-0) 3 Credit Hours.
Prerequisite: CS 3343. Discussion of theorem-proving by machine; includes computational linguistics, psychological modeling, and computer games.
CS 3841. Computer Organization Recitation. (1-0) 1 Credit Hour.
Prerequisite: CS 2123. Concurrent enrollment in CS 3843 is required.
Recitation to accompany CS 3843. (Formerly CS 2731. Credit cannot be earned for both CS 3841 and CS 2731.) Generally offered: Fall, Spring.

CS 3843. Computer Organization. (3-0) 3 Credit Hours.
Prerequisite: CS 2123. Concurrent enrollment in CS 3843 is required.
Organization of a computer system is introduced at block diagram level. Programming in assembly language and understanding the macroarchitecture of a computer is emphasized. Fundamentals of digital systems are introduced and the designs of various components used are investigated. (Formerly CS 2733. Credit cannot be earned for both CS 3843 and CS 2733.) Generally offered: Fall, Spring.

CS 3851. Computer Architecture Recitation. (1-0) 1 Credit Hour.
Prerequisites: CS 3423 and CS 3843. Concurrent enrollment in CS 3853 is required. Recitation to accompany CS 3853. (Formerly CS 4751. Credit cannot be earned for both CS 3851 and CS 4751.) Generally offered: Fall, Spring.

CS 3853. Computer Architecture. (3-0) 3 Credit Hours.
Prerequisites: CS 3423 and CS 3843. Concurrent enrollment in CS 3853 is required. Instruction set architecture, datapath and control unit design, advanced computer arithmetic, pipelining, memory hierarchy and I/O subsystem, performance issues. (Formerly CS 4753. Credit cannot be earned for both CS 3853 and CS 4753.) Generally offered: Fall, Spring.

CS 3873. Computer Networks. (3-0) 3 Credit Hours.
Prerequisite: CS 3843. Network architecture, TCP/IP protocol suite, routing, data-link layer protocols, medium access control protocols, error detection and recovery, local area networks, wireless and mobile networks. (Formerly CS 4873. Credit cannot be earned for both CS 3873 and CS 4873.) Generally offered: Spring.

CS 4223. Bioinformatics and Big Data. (3-0) 3 Credit Hours.
Prerequisite: CS 3343 or consent of instructor. Hands-on introduction to large-scale analysis of heterogeneous data with emphasis on integrating information and tools from publicly available biological databases to address complex problems.

CS 4233. Introduction to Computational Biology and Bioinformatics. (3-0) 3 Credit Hours.
Prerequisite: CS 3343. Study of algorithmic and statistical techniques in modeling and analyzing large-scale biological data such as DNA sequences, gene expression, and gene networks. Topics include fast string matching, sequence alignment, frequent pattern mining, clustering, classification, and significance testing.

CS 4313. Automata, Computability, and Formal Languages. (3-0) 3 Credit Hours.
Prerequisite: CS 3343. Discussion of abstract machines (finite state automata, pushdown automata, and Turing machines), formal grammars (regular, context-free, and type 0), and the relationship among them.

CS 4353. Unix and Network Security. (3-0) 3 Credit Hours.
Prerequisite: CS 3343. A technical survey of the fundamentals of computer and information security. Issues include cryptography, authentication, attack techniques at both the OS and network level, defense techniques, intrusion detection, scan techniques and detection, forensics, denial of service techniques and defenses, libpcap, libdnet and libnet programming. Generally offered: Spring.

CS 4363. Cryptography. (3-0) 3 Credit Hours.
Prerequisites: CS 3343 and CS 3433. A course in pure and applied cryptography, with emphasis on theory. Topics may include conventional and public-key cryptosystems, signatures, pseudo-random sequences, hash functions, key management, and threshold schemes.
CS 4733. Project Management. (3-0) 3 Credit Hours.
Prerequisite: CS 3773. Introduction to principles and best practices for software project management. Topics include software process models, capability maturity model, metrics, cost estimation, software project planning, risk management, software configuration management, people management, and software management CASE tools.

CS 4743. Enterprise Software Engineering. (3-0) 3 Credit Hours.
Prerequisite: CS 3773. Providing a hands-on introduction to principles and best practices for the development of enterprise-level software systems. Topics include architectural patterns, database models, remote deployment and execution, and concurrency management. (Formerly titled “Applied Software Engineering.”).

CS 4773. Object-Oriented Systems. (3-0) 3 Credit Hours.
Prerequisite: CS 3773. An introduction of principles and methodologies of good software design. Study of object-oriented concepts and techniques, encapsulation, inheritance mechanisms, polymorphism, and programming in one or more object-oriented languages. Examination of design patterns that provide reusable solutions to problems in object-oriented design.

CS 4783. Advanced Software Engineering. (3-0) 3 Credit Hours.
Prerequisite: CS 3773. Application of software engineering principles to develop a working, security-hardened software product as a team project. Real-world case studies and perspectives will accompany lecture to provide students with an industry-level viewpoint.

CS 4823. Introduction to Parallel Programming. (3-0) 3 Credit Hours.
Prerequisites: CS 3343 and CS 3423. Parallel programming concepts (partitioning, synchronization and communication, programming models-shared memory based and message based), programming tools and languages, performance issues.

CS 4833. Embedded Systems. (3-0) 3 Credit Hours.
Prerequisites: CS 3343, CS 3733, and CS 3853. Concepts and design principles of embedded systems. Microprocessor and hardware architecture, sensors and actuators, basic feedback control theory. Real-time scheduling, programming in embedded systems.

CS 4843. Introduction to Cloud Computing. (3-0) 3 Credit Hours.
Prerequisite: CS 3423. The general trend of modern computing in cloud. Cloud computing paradigm and associate key technologies. Programming in cloud environment (e.g., Hadoop, MapReduce, and OpenStack APIs). Privacy and security in Cloud.

CS 4853. Systems Development and Programming. (3-0) 3 Credit Hours.
Prerequisite: CS 3733. Concepts and knowledge on system booting, memory management, process and scheduling, interrupt handling, system calls, file systems, networking, device drivers and module programming. Runtime systems. Programming kernel modules in Linux.

CS 4863. Distributed Computing and Systems. (3-0) 3 Credit Hours.
Prerequisite: CS 3733. A distributed system comprises computers working together as a single unit. These systems are essential to the understanding of present and future computer applications. This course will include the following topics: concurrent processing, threads, network programming, distributed file systems, remote procedure calls, distributed objects, client-server models, and Internet protocols.

CS 4911. Independent Study. (0-0) 1 Credit Hour.
Prerequisites: Permission in writing (form available) from the instructor, the student’s advisor, the Department Chair, and the Dean of the College in which the course is offered. Independent reading, research, discussion, and/or writing under the direction of a faculty member. May be repeated for credit, but not more than 6 semester credit hours, regardless of discipline, will apply to a bachelor’s degree.

CS 4912. Independent Study. (0-0) 2 Credit Hours.
Prerequisites: Permission in writing (form available) from the instructor, the student’s advisor, the Department Chair, and the Dean of the College in which the course is offered. Independent reading, research, discussion, and/or writing under the direction of a faculty member. May be repeated for credit, but not more than 6 semester credit hours, regardless of discipline, will apply to a bachelor’s degree.

CS 4913. Independent Study. (0-0) 3 Credit Hours.
Prerequisites: Permission in writing (form available) from the instructor, the student’s advisor, the Department Chair, and the Dean of the College in which the course is offered. Independent reading, research, discussion, and/or writing under the direction of a faculty member. May be repeated for credit, but not more than 6 semester credit hours, regardless of discipline, will apply to a bachelor’s degree. Generally offered: Fall, Spring, Summer.

CS 4933. Internship in Computer Science. (0-0) 3 Credit Hours.
Prerequisites: Junior or senior standing, an overall 2.5 grade point average, and permission in writing from the instructor, the Department Chair, and the Dean of the College of Sciences. The opportunity for a semester-long work experience in a private business or public agency in a computer science-related position. Not more than 3 semester credit hours of CS 4933, and not more than a total of 6 semester credit hours of CS 4933 and independent study courses may count toward the Bachelor of Science degree in Computer Science. The grade report for this course is either “CR” (satisfactory participation in the internship) or “NC” (unsatisfactory participation in the internship). Generally offered: Fall, Summer.

CS 4953. Special Studies in Computer Science. (3-0) 3 Credit Hours.
Prerequisite: Consent of instructor. An organized course offering the opportunity for specialized study not normally or not often available as part of the regular course offerings. Special Studies may be repeated for credit when topics vary, but not more than 6 semester credit hours, regardless of discipline, will apply to a bachelor’s degree. Generally offered: Summer.

CS 4963. Advanced Topics in Systems and Cloud. (3-0) 3 Credit Hours.
Prerequisite: Consent of instructor. Advanced topics in an area of systems and cloud. May be repeated for credit when topics vary.

CS 4973. Advanced Topics in Data Science. (3-0) 3 Credit Hours.
Prerequisite: Consent of instructor. Advanced topics in an area of data science. May be repeated for credit when topics vary.

CS 4993. Honors Research. (0-0) 3 Credit Hours.
Prerequisites: Enrollment limited to candidates for College Honors during their last two semesters; approval by the College Honors Committee. Supervised research and preparation of an honors thesis. May be repeated once with approval.