The Department of Mechanical Engineering offers a Bachelor of Science degree in Mechanical Engineering (ME). The program is accredited by the Engineering Accreditation Commission (ESC) of ABET. Individuals enrolling in this degree program are given the opportunity to develop a strong background in Engineering Science and to learn the analysis, design, and synthesis tools necessary to contribute in traditional and emerging areas of technology.

The department has excellent laboratory facilities where students receive hands-on instruction from faculty members. Computer-aided design (CAD) facilities, including state-of-the-art workstations, are routinely used. Some classes are taught by adjunct faculty from local industries, giving students the opportunity to interact with engineering professionals engaged in relevant engineering practice.

Because of the broad engineering training in this program, graduates may find employment in nearly all industries, including companies or government agencies associated with aerospace, automotive, energy, petroleum, manufacturing, and research.

Bachelor of Science Degree in Mechanical Engineering

The Bachelor of Science degree in Mechanical Engineering offers students the opportunity to prepare for careers in traditional, new, and emerging technologies related to the practice of Mechanical Engineering, which is a versatile and broadly-based engineering discipline. Mathematics and basic sciences, such as physics and chemistry, form the foundation of mechanical engineering, which requires an understanding of diverse subject areas, such as solid and fluid mechanics, thermal sciences, mechanical design, structures, material selection, manufacturing processes and systems, mechanical systems and control, and instrumentation.

The six areas of concentration within the Mechanical Engineering program are:

1. General Mechanical Engineering
2. Energy, Thermal and Fluid Systems
3. Manufacturing Engineering and Systems
4. Mechanical Systems and Design
5. Mechanics and Materials
6. Oil and Gas

The Mechanical Engineering curriculum provides education and basic engineering training in all specializations through the required coursework. Students may develop a degree of specialization and depth in one of the concentration areas through the selection of technical elective courses. The design experience is integrated throughout the program. Development of open-ended, problem-solving skills is a part of many mechanical engineering courses. Design projects with formal report writing are included in many courses. In addition, a substantial portion of all technical elective courses is devoted to the design of systems and components. A capstone design sequence at the senior level provides an opportunity to apply and integrate the knowledge gained throughout the curriculum to the development of an instructor-approved project.

The laboratory requirements are designed to provide hands-on experience in basic measurement and instrumentation equipment and the application of classroom theory. Students may receive additional hands-on experiences by selecting technical elective courses with laboratory components.

Opportunities exist for students to participate in research and design projects. All students are eligible to participate in undergraduate research, through the independent study courses. Students also have an opportunity to participate in an approved co-op program and may receive up to 3 semester credit hours for their experience.

Educational Objectives

The program educational objectives of the Bachelor of Science degree in the Mechanical Engineering program are to provide graduates with opportunities to:

1. Have engineering careers in industry or government and/or pursue advanced graduate or professional degrees.
2. Apply their engineering skills to their careers.
3. Continue to advance their knowledge, communication and leadership skills by using technology, continuing education, solving problems, and serving in technical or professional societies.
4. Apply their understanding of societal, environmental, and ethical issues to their professional activities.

Student Outcomes

Graduates of the UTSA Mechanical Engineering Program will demonstrate the following:

1. an ability to apply knowledge of mathematics, science, and engineering
2. an ability to design and conduct experiments, as well as to analyze and interpret data
3. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
4. an ability to function on multidisciplinary teams
5. an ability to identify, formulate, and solve engineering problems
6. an understanding of professional and ethical responsibility
7. an ability to communicate effectively
8. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
9. a recognition of the need for, and an ability to engage in life-long learning
10. a knowledge of contemporary issues
11. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice
12. an ability to apply principles of engineering, basic science, and mathematics (including multivariate calculus and differential equations) to model, analyze, design, and realize physical systems, components or processes; and work professionally in both thermal and mechanical systems areas.

The minimum number of semester credit hours required for this degree is 128, at least 39 of which must be at the upper-division level. All candidates for this degree must fulfill the Core Curriculum requirements,
the General Engineering requirements, and the degree requirements, listed below.

Core Curriculum Requirements (42 semester credit hours)

Students seeking the Bachelor of Science degree in Mechanical Engineering must fulfill the University Core Curriculum requirements in the same manner as other students. The courses listed below satisfy both major requirements and Core Curriculum requirements; however, if these courses are taken to satisfy both requirements, then students may need to take additional courses in order to meet the minimum number of semester credit hours required for the degree. For a complete listing of courses that satisfy the Core Curriculum requirements, see below.

MAT 1214 may be used to satisfy the core requirement in Mathematics, as well as one of the General Engineering requirements. PHY 1943 and PHY 1963 may be used to satisfy the core requirement in Life and Physical Sciences, as well as two of the General Engineering requirements. EGR 1403 may be used to satisfy the core requirement in the Component Area Option.

Core Curriculum Component Area Requirements (http://catalog.utsa.edu/undergraduate/bachelorsdegreeregulations/degreerequirements/corecurriculumcomponentarearequirements)

General Engineering Requirements

Students seeking the Bachelor of Science degree in Mechanical Engineering must complete the following 22 semester credit hours:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 1103</td>
<td>General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>EGR 2323</td>
<td>Applied Engineering Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1214</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MAT 1224</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHY 1943 & PHY 1951</td>
<td>Physics for Scientists and Engineers I and Physics for Scientists and Engineers I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PHY 1963 & PHY 1971</td>
<td>Physics for Scientists and Engineers II and Physics for Scientists and Engineers II Laboratory</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credit Hours 22

Gateway Courses

Students pursuing the Bachelor of Science degree in Mechanical Engineering must successfully complete each of the following Gateway Courses with a grade of “C-” or better in no more than two attempts. A student who is unable to successfully complete these courses within two attempts, including dropping a course with a grade of “W” or taking an equivalent course at another institution, will be required to change his or her major.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 2103</td>
<td>Statics</td>
</tr>
<tr>
<td>EGR 2323</td>
<td>Applied Engineering Analysis I</td>
</tr>
<tr>
<td>EGR 2513</td>
<td>Dynamics</td>
</tr>
</tbody>
</table>

Degree Requirements

Students seeking the Bachelor of Science degree in Mechanical Engineering must complete the following semester credit hours, as well as the Core Curriculum requirements and General Engineering requirements:

A. Required foundation and general mechanical engineering courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 2213</td>
<td>Electric Circuits and Electronics</td>
<td>3</td>
</tr>
<tr>
<td>EGR 2103</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>EGR 2513</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>EGR 3323</td>
<td>Applied Engineering Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>ME 1302</td>
<td>Introduction to Mechanical Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ME 1402</td>
<td>Mechanical Engineering Practice and Graphics</td>
<td>2</td>
</tr>
<tr>
<td>ME 2173</td>
<td>Numerical Methods</td>
<td>3</td>
</tr>
<tr>
<td>ME 3113</td>
<td>Measurements and Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>ME 3244</td>
<td>Materials Engineering and Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>ME 3263</td>
<td>Manufacturing Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ME 3293</td>
<td>Thermodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>ME 3543</td>
<td>Dynamic Systems and Control</td>
<td>3</td>
</tr>
<tr>
<td>ME 3663</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ME 3813</td>
<td>Mechanics of Solids</td>
<td>3</td>
</tr>
<tr>
<td>ME 3823</td>
<td>Machine Element Design I</td>
<td>3</td>
</tr>
<tr>
<td>ME 4293</td>
<td>Thermodynamics II</td>
<td>3</td>
</tr>
<tr>
<td>ME 4313</td>
<td>Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>ME 4543</td>
<td>Mechatronics</td>
<td>3</td>
</tr>
<tr>
<td>ME 4733</td>
<td>Mechanical Engineering Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ME 4812</td>
<td>Senior Design I</td>
<td>2</td>
</tr>
<tr>
<td>ME 4813</td>
<td>Senior Design II</td>
<td>3</td>
</tr>
</tbody>
</table>

B. Mechanical Engineering elective courses

Select 9 semester credit hours of Mechanical Engineering elective courses. Students are encouraged to choose courses from a specific concentration listed below. Students may also select courses to earn a Certificate in Oil/Gas.

Approved mathematics or basic science elective courses:

Concentration: Energy, Thermal and Fluid Systems

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 4183</td>
<td>Compressible Flow and Propulsion Systems</td>
</tr>
<tr>
<td>ME 4323</td>
<td>Thermal Systems Design</td>
</tr>
<tr>
<td>ME 4343</td>
<td>Heating, Air Conditioning, and Refrigeration Design</td>
</tr>
<tr>
<td>ME 4593</td>
<td>Alternative Energy Sources</td>
</tr>
<tr>
<td>ME 4613</td>
<td>Power Plant System Design</td>
</tr>
<tr>
<td>ME 4623</td>
<td>Internal Combustion Engines</td>
</tr>
</tbody>
</table>

Concentration: Manufacturing Engineering and Systems

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 4563</td>
<td>Computer Integrated Manufacturing</td>
</tr>
<tr>
<td>ME 4573</td>
<td>Facilities Planning and Design</td>
</tr>
<tr>
<td>ME 4583</td>
<td>Enterprise Process Engineering</td>
</tr>
</tbody>
</table>

Concentration: Mechanical Systems and Design

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 3323</td>
<td>Mechanical Vibration</td>
</tr>
<tr>
<td>ME 3513</td>
<td>Mechanism Design</td>
</tr>
<tr>
<td>ME 4433</td>
<td>Machine Element Design II</td>
</tr>
<tr>
<td>ME 4553</td>
<td>Automotive Vehicle Dynamics</td>
</tr>
<tr>
<td>ME 4723</td>
<td>Reliability and Quality Control in Engineering Design</td>
</tr>
<tr>
<td>ME 4773</td>
<td>Fundamentals of Robotics</td>
</tr>
</tbody>
</table>

Concentration: Mechanics and Materials

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 4243</td>
<td>Intermediate Materials Engineering</td>
</tr>
</tbody>
</table>
Concentration: Oil and Gas
- ME 3323: Mechanical Vibration
- ME 4323: Thermal Systems Design
- ME 4373: Separation Processes
- ME 4643: Pressure Vessel and Piping Design
- ME 4653: Oil and Gas Engineering and Reservoir Geomechanics

Concentration: General Mechanical Engineering
Courses selected from any of the previous areas
- EGR 4993: Honors Research
- ME 4953: Special Studies in Mechanical Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 1403</td>
<td>Technical Communication (or other core option)</td>
</tr>
<tr>
<td>Math/Science Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring
- EGR 2513: Dynamics
- EGR 3323: Applied Engineering Analysis II
- ME 2173: Numerical Methods
- ME 3244: Materials Engineering and Laboratory
- ME 3293: Thermodynamics I

Third Year

Fall
- EE 2213: Electric Circuits and Electronics
- ME 3543: Dynamic Systems and Control
- ME 3663: Fluid Mechanics
- ME 3813: Mechanics of Solids
- ME 4293: Thermodynamics II

Spring
- ME 3113: Measurements and Instrumentation
- ME 3263: Manufacturing Engineering
- ME 3823: Machine Element Design I
- ME 4313: Heat Transfer
- POL 1013: Introduction to American Politics (core)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 4543</td>
<td>Mechatronics</td>
</tr>
<tr>
<td>ME 4733</td>
<td>Mechanical Engineering Laboratory</td>
</tr>
<tr>
<td>ME 4812</td>
<td>Senior Design I</td>
</tr>
<tr>
<td>POL 1133 or 1213</td>
<td>Texas Politics and Society (core)</td>
</tr>
<tr>
<td>ME Technical elective</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

Fall
- ME 4813: Senior Design II
- ME Technical elective
- ME Technical elective
- American History core
- Social and Behavioral Sciences core

Certificate in Oil/Gas
The Certificate in Oil/Gas is designed to prepare mechanical engineering degree-seeking students and non-degree-seeking students with mechanical engineering background with the fundamental engineering knowledge necessary for successful careers in Oil/Gas Industry. It certifies to employers that students awarded the certificate have completed coursework essential to Oil/Gas industry.

Eligibility requirements:
- Meet the prerequisite courses for the certificate program (refer to course descriptions in the UTSA Undergraduate Catalog)

Total Credit Hours
- 128.0
Mechanical Engineering (ME) Courses

ME 1302. Introduction to Mechanical Engineering. (2-0) 2 Credit Hours. (TCCN = ENGR 1201)
Prerequisites: MAT 1073 and completion of or concurrent enrollment WRC 1013. Engineering ethics, principles and fundamentals of engineering design, decision-making processes in cases of mechanical engineering design. (Formerly ME 1301. Credit cannot be earned for both ME 1302 and ME 1301.).

ME 1402. Mechanical Engineering Practice and Graphics. (1-3) 2 Credit Hours. (TCCN = ENGR 1204)
Prerequisites: MAT 1093 and ME 1302. Introduction to engineering graphics: geometric constructions, multi-view drawing, dimensioning, sections, pictorials and auxiliary views. Computer-aided design, generation of mechanical drawings, and design projects. (Formerly ME 1403. Credit cannot be earned for both ME 1402 and ME 1403.)

ME 2173. Numerical Methods. (3-0) 3 Credit Hours.
Prerequisite: EGR 2323. Introduction to the fundamentals of syntax and debugging techniques for interpreted and structured programming languages with an emphasis on engineering applications. Cross-platform interchange of data and use of visualization tools for effective communication of computational results. Error and computer arithmetic, root finding, interpolation and extrapolation, curve-fitting, matrix manipulation, numerical integration, solution methods for systems of linear algebraic equations and differential equations. (Formerly ME 3173. Credit cannot be earned for both ME 3173 and ME 2173.).

ME 3113. Measurements and Instrumentation. (3-1) 3 Credit Hours.
Prerequisites: EE 2213, EGR 2513, PHY 1951, and PHY 1971. Fundamentals of measurement systems, descriptive statistics, probability, error, error propagation, confidence intervals, hypothesis testing, correlation, linear regression, data acquisition.

ME 3244. Materials Engineering and Laboratory. (3-3) 4 Credit Hours.
Prerequisites: CHE 1103 and EGR 2103. Fundamentals in structures, properties, fabricacion, and mechanical behavior of engineering materials. Investigation of the properties of engineering materials, with emphasis on metals, sample preparation, metallography, and foundry processes. (Formerly ME 3241 and ME 3243. Credit cannot be earned for both ME 3244 and ME 3241/ME 3243. Prior completion of ME 3241 and ME 3243 can be substituted for this course.).

ME 3263. Manufacturing Engineering. (3-0) 3 Credit Hours.
Prerequisite: EGR 2513. An integrated coverage of mechanical properties of materials, tolerances, measurement and quality assurance, manufacturing processes, and manufacturing systems, fundamental definitions, design for manufacturing, and mathematical models, hands-on applications related to measurement and manufacturing processes. (Formerly titled “Materials Processing.”).

ME 3293. Thermodynamics I. (3-0) 3 Credit Hours.
Prerequisites: EGR 2103 and MAT 1224. Heat, work, equations of state, thermodynamics systems, control volume, first and second laws of thermodynamics, applications of the laws of thermodynamics, reversible and irreversible processes, and introduction to basic thermodynamic cycles.

ME 3323. Mechanical Vibration. (3-0) 3 Credit Hours.
Prerequisites: EGR 2323 and EGR 2513. Free and forced vibrations, single and multiple degree of freedom systems, damping, matrix methods, time-domain and frequency-domain. Applications in the transmission and control of vibration.
ME 3513. Mechanism Design. (3-0) 3 Credit Hours.
Prerequisites: EGR 2513 and ME 1402. Introduction to mechanisms, graphical and linear analytical methods for kinematic synthesis of mechanisms; design of cam follower; gearing fundamentals, ordinary and planetary gear trains; and computer-aided design projects.

ME 3543. Dynamic Systems and Control. (3-0) 3 Credit Hours.
Prerequisites: EE 2213, EGR 2513 and EGR 3323. Introduction to modeling and control of dynamic physical systems, analysis and design of control systems for mechanical, electrical, manufacturing, fluid, and thermal systems. (Formerly ME 4522 and ME 4523. Credit cannot be earned for more than one of the following: ME 3543, ME 4522, or ME 4523.)

ME 3663. Fluid Mechanics. (3-0) 3 Credit Hours.
Prerequisites: EGR 2323, EGR 2513, and concurrent enrollment in ME 3293. Fluid properties, fluid statics, integral and differential analysis of fluid flow, viscous laminar and turbulent flow in conduits, dimensional analysis, boundary layer concepts, drag and lift.

ME 3813. Mechanics of Solids. (3-0) 3 Credit Hours.
Prerequisite: EGR 2103. Internal forces and deformations in solids, stress, strain and their relations, torsion, stresses and deflections in beams, and elastic behavior of columns.

ME 3823. Machine Element Design I. (3-0) 3 Credit Hours.
Prerequisites: ME 1402, ME 3244 (or ME 3241 and ME 3243 in previous catalogs), and ME 3813. Introduction to design of machine elements, pressurized cylinders, press and shrink fits, curved beams and contact stresses, static and fatigue theories of failure, shafts and shaft components, welded and bolted connections, mechanical springs, and computer-aided design projects. (Formerly ME 4423. Credit cannot be earned for both ME 3823 and ME 4423.)

ME 4173. High Performance Computing. (3-0) 3 Credit Hours.
Prerequisite: ME 2173. Introduction to UNIX (login, shell scripts, editors, file permissions), visualization (software tools, data formats), Parallel programming (numerical libraries, Message Passing Interface, Trilinos, GPGPU programming).

ME 4183. Compressible Flow and Propulsion Systems. (3-0) 3 Credit Hours.
Prerequisites: ME 3293 and ME 3663. Application of mass, energy, and force balance to compressible fluids, analysis of one-dimensional steady flow, isentropic flow, adiabatic flow, flow with heat addition, supersonic flow, and shock waves. Introduction to the analysis and design of air-breathing engines for aeronautical transportation. (Formerly EGR 4183. Credit cannot be earned for both ME 4183 and EGR 4183.)

ME 4243. Intermediate Materials Engineering. (3-0) 3 Credit Hours.
Prerequisites: ME 3244 (or ME 3241 and ME 3243 in previous catalogs) and ME 3813. Selected topics in macroscopic and microscopic aspects of the mechanical behavior of metals, ceramics, polymers and composites, introduction to dislocation theory, temperature dependent deformations, engineering failures, and fracture mechanics.

ME 4293. Thermodynamics II. (3-0) 3 Credit Hours.
Prerequisite: ME 3293. Energy and availability analysis, reactive and nonreactive mixtures, moist air properties, psychrometric systems and analysis, vapor and gas power cycles, refrigeration and heat-pump cycles, thermodynamic relations, and chemical equilibria.

ME 4313. Heat Transfer. (3-0) 3 Credit Hours.
Prerequisites: EGR 3323, ME 2173 and ME 3663. Generalized potential distribution and gradients, and heat transfer, including transient and steady state conduction, forced and free convection, radiation, and heat exchanger analysis.

ME 4323. Thermal Systems Design. (3-0) 3 Credit Hours.
Prerequisite: ME 4313. Application of basic thermodynamics, fluid mechanics, heat transfer, and computer methods to the design of heat exchangers, coils, fans, pumps, and thermal energy systems.

ME 4343. Heating, Air Conditioning, and Refrigeration Design. (3-0) 3 Credit Hours.
Prerequisites: ME 4293 and ME 4313. Moist air properties, human comfort, solar radiation, heating loads, design selection, construction, and operation of air conditioning equipment, and duct design.

ME 4373. Separation Processes. (3-0) 3 Credit Hours.
Prerequisites: ME 4293 and ME 4313. Rate- and equilibrium-controlled separation, mass transfer, phase equilibrium, absorption, distillation, extraction, adsorption and membranes.

ME 4433. Machine Element Design II. (3-0) 3 Credit Hours.
Prerequisite: ME 3823. Design of spur, helical, bevel and worm gears; journal and rolling bearings; design of couplings, clutches, brakes, and flywheels; and computer-aided design project.

ME 4543. Mechatronics. (2-3) 3 Credit Hours.
Prerequisites: ME 3113 and ME 3543. Study of electromechanical design as coupled with control systems; integration of sensors; topics in input signal conditions. Lab will include use of modern engineering software and hardware.

ME 4553. Automotive Vehicle Dynamics. (3-0) 3 Credit Hours.
Prerequisites: EGR 2323 and EGR 2513. Dynamics and control of automotive systems, handling, tires, suspension, steering, and aerodynamic forces.

ME 4563. Computer Integrated Manufacturing. (3-0) 3 Credit Hours.
Prerequisite: ME 3263. Fundamental concepts and models related to computer-aided design, computer-aided process planning, computer-aided manufacturing, production planning and scheduling, and manufacturing execution systems. Laboratory work includes computer-aided applications and programming of automated production equipment.

ME 4573. Facilities Planning and Design. (3-0) 3 Credit Hours.
Prerequisite: ME 3263. Product, process, and schedule design, flow, space, and activity relationships, material handling, layout planning models and design algorithms, and warehouse operations.

ME 4583. Enterprise Process Engineering. (3-0) 3 Credit Hours.
Prerequisite: ME 3263. Fundamental concepts, methodologies, and tools for the design, engineering and continuous improvement of enterprises. Topics include Six Sigma for process design and improvement, lean manufacturing fundamentals, value-stream mapping, performance evaluation, and other contemporary enterprise process engineering approaches.

ME 4593. Alternative Energy Sources. (3-0) 3 Credit Hours.
Prerequisites: ME 4293 and ME 4313. Solar, nuclear, wind, hydrogen, and geothermal energy sources. Resources, production, utilization, economics, sustainability, and environmental considerations. (Formerly ME 3593. Credit cannot be earned for both ME 3593 and ME 4593.)

ME 4603. Finite Element Analysis. (3-0) 3 Credit Hours.
Prerequisites: EGR 3323, ME 2173 and ME 3823. Finite element method fundamentals, advanced geometric modeling of mechanical components and systems, and finite element modeling of components.

ME 4613. Power Plant System Design. (3-0) 3 Credit Hours.
Prerequisites: ME 4293 and ME 4313. Application of thermodynamics and fluid mechanics to the design of vapor and gas-turbine power plant systems including boilers, condensers, turbines, pumps, compressors, and cooling towers.
ME 4623. Internal Combustion Engines. (3-0) 3 Credit Hours.
Prerequisites: ME 4293 and ME 4313. Application of thermodynamic cycles in design, analysis, and modeling of internal combustion engines including spark-ignition and compression-ignition cycles, thermochemistry, fuels, combustion, emissions, and pollution.

ME 4643. Pressure Vessel and Piping Design. (3-0) 3 Credit Hours.
Prerequisites: ME 3663 and ME 3813. ASME Section XIII Boiler and Pressure Vessel code, inspection, maintenance, repair, and modification of pressure vessels. Piping design and construction.

ME 4653. Oil and Gas Engineering and Reservoir Geomechanics. (3-0) 3 Credit Hours.
Prerequisites: ME 3663 and ME 3813. Introduction to the oil and gas industry. Measurement; deformation mechanisms in rock; rock fracture description and analysis; wellbore stresses and failure; wellbore stability analysis; fault stability analysis; depletion-induced reservoir deformation; and hydraulic fracturing.

ME 4723. Reliability and Quality Control in Engineering Design. (3-0) 3 Credit Hours.
Prerequisite: ME 3113. Introduction to statistical methods in reliability and probabilistic engineering design methodology, statistical quality control and inspection, life prediction and testing, and design optimization.

ME 4733. Mechanical Engineering Laboratory. (2-3) 3 Credit Hours.
Prerequisites: ME 3113, ME 3813, and ME 4293. Completion of or concurrent enrollment in ME 4313 is required. Transducers and signal conditioning, strain, force, acceleration, controls, vibration, rotating machinery, fluid flow, heat transfer, thermodynamics, internal combustion engines, and design of experiments. (Formerly ME 4702. Credit cannot be earned for ME 4702 and ME 4733. Prior completion of ME 4702 and ME 4802 can be substituted for this course.)

ME 4773. Fundamentals of Robotics. (3-0) 3 Credit Hours.
Prerequisite: ME 3543. Fundamental analysis and control methods of robot manipulators will be taught in this course. Kinematics and dynamics of robotic systems will be studied. Project for the design and analysis of a robotic system with practical application is expected.

ME 4812. Senior Design I. (2-0) 2 Credit Hours.
Prerequisites: ME 3263, ME 3543 and ME 3823. Completion of or concurrent enrollment in ME 4313, ME 4543 (or ME 3513 in previous catalogs) and ME 4733 required. Design project proposals, computer-aided synthesis, analysis, and modeling of an open-ended problem development and presentation of conceptual designs. Industrial cooperation is encouraged. (Formerly ME 4811. Credit cannot be earned for both ME 4811 and ME 4812.)

ME 4813. Senior Design II. (2-3) 3 Credit Hours.
Prerequisite: ME 4812. Development of a working design of an instructor-approved design project using computer-aided synthesis, analysis, modeling, and optimization methods. Industrial cooperation encouraged. Considerations of safety, reliability, environmental, and economic constraints, and ethical and social impacts.

ME 4911. Independent Study. (0-0) 1 Credit Hour.
Prerequisite: Permission in writing (form available) from the instructor, the student’s advisor, the Department Chair, and Dean of the College. Independent reading, research, discussion, and/or writing under the direction of a faculty member. May be repeated for credit, but not more than 6 semester credit hours of independent study, regardless of discipline, will apply to a bachelor’s degree.

ME 4912. Independent Study. (0-0) 2 Credit Hours.
Prerequisite: Permission in writing (form available) from the instructor, the student’s advisor, the Department Chair, and Dean of the College. Independent reading, research, discussion, and/or writing under the direction of a faculty member. May be repeated for credit, but not more than 6 semester credit hours of independent study, regardless of discipline, will apply to a bachelor’s degree.

ME 4913. Independent Study. (0-0) 3 Credit Hours.
Prerequisite: Permission in writing (form available) from the instructor, the student’s advisor, the Department Chair, and Dean of the College. Independent reading, research, discussion, and/or writing under the direction of a faculty member. May be repeated for credit, but not more than 6 semester credit hours of independent study, regardless of discipline, will apply to a bachelor’s degree.

ME 4953. Special Studies in Mechanical Engineering. (3-0) 3 Credit Hours.
Prerequisite: Will depend on the topic. An organized course offering the opportunity for specialized study not normally or not often available as part of the regular course offerings. Special Studies may be repeated for credit when topics vary, but not more than 9 semester credit hours, regardless of discipline, will apply to a bachelor’s degree.

ME 4963. Mechanical Engineering Applications to Biomedical Systems. (3-0) 3 Credit Hours.
Prerequisites: EGR 2513, ME 3663 and ME 3813. Applications of dynamics, solid mechanics and fluid mechanics to biomedical systems. (Formerly titled "Bioengineering.").