Physics (PHY) Courses

PHY 1013. Universes. (3-0) 3 Credit Hours. (TCCN = PHYS 1310)
Prerequisite: MAT 1023 or MAT 1073 or consent of instructor. This course is an introduction to contemporary physics and cosmology. The goal is to study some of the profound discoveries in fundamental physics made during the 20th century, and how they have shaped our modern conception of the universe and of our place in it. Topics discussed include Einstein’s theories of special and general relativity, quantum physics, modern cosmology (including the very early universe), and the standard model of elementary particles and forces. May not be applied toward the B.S. degree in Physics without prior written approval of the department. May apply toward the Core Curriculum requirement in Life and Physical Sciences.

PHY 1603. Algebra-based Physics I Laboratory. (1-4) 1 Credit Hour.
Prerequisites: PHY 1611 completed with a grade of "C-" or better. Concurrent enrollment in PHY 1611 is recommended. The first of a two-part, algebra-based introduction to physics for biology and other majors that do not require calculus-based physics. Topics include mechanics, thermodynamics, vibrations and waves. Generally offered: Fall, Spring, Summer.

PHY 1611. Algebra-based Physics I Laboratory. (1-4) 1 Credit Hour. (TCCN = PHYS 1301)
Prerequisite: MAT 1023 or MAT 1073 completed with a grade of "C-" or better. Concurrent enrollment in PHY 1611 is recommended. The first of a two-part, algebra-based introduction to physics for biology and other majors that do not require calculus-based physics. Topics include mechanics, thermodynamics, vibrations and waves. Generally offered: Fall, Spring, Summer.

PHY 1623. Algebra-based Physics II Laboratory. (1-3) 3 Credit Hours. (TCCN = PHYS 1302)
Prerequisite: PHY 1603 completed with a grade of "C-" or better. Concurrent enrollment in PHY 1631 is recommended. The second of a two-part, algebra-based introduction to physics for biology and other majors that do not require calculus-based physics. Topics include electricity, magnetism, optics, relativity, and quantum physics. Generally offered: Fall, Spring, Summer.

PHY 1631. Algebra-based Physics II Laboratory. (1-4) 1 Credit Hour. (TCCN = PHYS 1302)
Prerequisites: PHY 1611 completed with a grade of "C-" or better and completion of or concurrent enrollment in PHY 1623. Laboratory accompanies PHY 1623; uses modern data acquisition and analysis tools to study the classic physics experiments that underlie the concepts discussed in PHY 1623. Generally offered: Fall, Spring, Summer.

PHY 1903. Modern Physics Laboratory. (1-4) 1 Credit Hour.
Prerequisites: PHY 1943 and MAT 1224 (or MAT 1193 and STA 1403) completed with grades of "C-" or better; completion of or concurrent enrollment in PHY 1224 (if student took MAT 1214) or STA 1403 (if student took MAT 1193) is required. Concurrent enrollment in PHY 1951 is recommended. The first of a two-part, calculus-based introduction to classical physics, designed for physical sciences, mathematics, and engineering majors. Topics include mechanics and Newton's laws, conservation laws, gravitation, rotational motion and rigid bodies, oscillations and waves. Classes meet weekly for three hours of lecture and one hour of recitation. May apply toward the Core Curriculum requirement in Life and Physical Sciences. (Formerly PHY 1903 and PHY 1904. Credit cannot be earned for more than one of the following: PHY 1903, PHY 1904, or PHY 1943.) Generally offered: Fall, Spring.

PHY 1943. Physics for Scientists and Engineers I. (3-1) 3 Credit Hours. (TCCN = PHYS 2325)
Prerequisites: MAT 1193 or MAT 1214 completed with a grade of "C-" or better; completion of or concurrent enrollment in MAT 1224 (if student took MAT 1214) or STA 1403 (if student took MAT 1193) is required. Concurrent enrollment in PHY 1951 is recommended. The first of a two-part, calculus-based introduction to classical physics, designed for physical sciences, mathematics, and engineering majors. Topics include mechanics and Newton's laws, conservation laws, gravitation, rotational motion and rigid bodies, oscillations and waves. Classes meet weekly for three hours of lecture and one hour of recitation. May apply toward the Core Curriculum requirement in Life and Physical Sciences. (Formerly PHY 1903 and PHY 1904. Credit cannot be earned for more than one of the following: PHY 1903, PHY 1904, or PHY 1943.) Generally offered: Fall, Spring.

PHY 1951. Physics for Scientists and Engineers I Laboratory. (1-4) 1 Credit Hour.
Prerequisite: Completion of, with a grade of "C-" or better, or concurrent enrollment in PHY 1943. Laboratory to accompany PHY 1943; uses modern data acquisition and analysis tools to study the classic physics experiments that underlie the concepts discussed in PHY 1943. (Credit cannot be earned for both PHY 1951 and PHY 1911.) Generally offered: Fall, Spring.

PHY 1963. Physics for Scientists and Engineers II. (3-1) 3 Credit Hours. (TCCN = PHYS 2326)
Prerequisites: PHY 1943 and MAT 1224 (or MAT 1193 and STA 1403) completed with grades of "C-" or better. Concurrent enrollment in PHY 1971 is recommended. The second of a two-part, calculus-based introduction to classical physics, designed for physical sciences, mathematics, and engineering majors. Topics include an introduction to thermal physics, electricity and magnetism, fundamentals of circuits, electromagnetic induction, AC circuits, electromagnetic waves, and Maxwell's equations. Classes meet weekly for three hours of lecture and one hour of recitation. May apply toward the Core Curriculum requirement in Life and Physical Sciences. (Formerly PHY 1923 and PHY 1924. Credit cannot be earned for more than one of the following: PHY 1923, PHY 1924, or PHY 1963.) Generally offered: Fall, Spring.

PHY 1971. Physics for Scientists and Engineers II Laboratory. (1-4) 1 Credit Hour.
Prerequisites: PHY 1951 completed with a grade of "C-" or better and completion of or concurrent enrollment in PHY 1963. Laboratory to accompany PHY 1963; uses modern data acquisition and analysis tools to study the classic physics experiments that underlie the concepts discussed in PHY 1963. (Credit cannot be earned for both PHY 1971 and PHY 1931.) Generally offered: Fall, Spring.

PHY 2103. Modern Physics. (3-0) 3 Credit Hours.
Prerequisites: PHY 1943, MAT 2214 (completed with a grade of "C-" or better), and completion of or concurrent enrollment in PHY 3203, or consent of instructor. Topics include special relativity, Planck's Radiation Law, elements of quantum mechanics, atomic and molecular structures, spectra, the atomic nucleus, nuclear reactions, and an introduction to elementary particles. (Formerly PHY 3103. Credit cannot be earned for both PHY 2103 and PHY 3103.) Generally offered: Fall, Spring.

PHY 2111. Modern Physics Laboratory. (1-4) 1 Credit Hour.
Prerequisites: PHY 1963, PHY 1971, and completion of, with a grade of "C-" or better, or concurrent enrollment in PHY 2103. Laboratory to accompany PHY 2103; Uses modern data acquisition and analysis tools to study the classic physics experiments that underlie the concepts discussed in PHY 2103. Generally offered: Fall, Spring.
PHY 2823. Mathematical Physics I. (3-0) 3 Credit Hours.
Prerequisites: MAT 2214 and PHY 1963, or consent of instructor. Topics may include vector analysis, introduction to complex variables, Fourier series, ordinary differential equations, linear algebra, and selected application to problems in mechanics and electromagnetic theory. (Formerly PHY 3823. Credit cannot be earned for both PHY 2823 and PHY 3823.) Generally offered: Fall, Spring.

PHY 3003. Current Research Topics in Physics. (3-0) 3 Credit Hours.
Prerequisites: PHY 1623 and PHY 1631, or PHY 1963 and PHY 1971, completed with a grade of "C-" or better. This course provides students the opportunity to acquire knowledge in contemporary physics through the study and class discussions of selected topics and recent articles. Subjects may include one or more of the following: special and general relativity, elements of quantum mechanics, atomic and molecular physics, solid state, biophysics, nuclear physics, introduction to elementary particles, astrophysics and cosmology, etc. May not be applied toward the B.S. or B.A. degree in Physics without prior written approval of the department.

PHY 3143. Introduction to Computational Physics. (3-0) 3 Credit Hours.
Prerequisites: PHY 2103, PHY 2823, and PHY 3203, or consent of instructor. This course introduces the computer techniques used to solve (and improve the understanding of) physical problems that may be intractable by the standard pencil and paper analytical approach. Topics may include numerical solution of differential equations, numerical integration, eigenvalue problems, use of computer algebra systems such as Mathematica or Maple, Monte Carlo methods, computer visualization of physical problems, etc. Examples are taken from classical and quantum mechanics, electrodynamics, statistical mechanics, and solid state physics. May be applied toward a B.S. degree in Physics with approval of the physics advisor. (Formerly titled "Computer Visualization of Physics").

PHY 3203. Classical Mechanics I. (3-0) 3 Credit Hours.
Prerequisites: PHY 1963 and completion of, with a grade of "C-" or better, or concurrent enrollment in PHY 2823, or consent of instructor. Topics include Newtonian mechanics, oscillations, central-force motion, gravitation, Hamiltonian and Lagrangian dynamics. Generally offered: Fall, Spring.

PHY 3293. Thermal Physics. (3-0) 3 Credit Hours.
Prerequisites: PHY 1963 and PHY 2823, or consent of instructor. Topics include fundamentals of thermodynamics: entropy, free energy, phase transitions, and thermodynamic potentials; equilibrium, Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac distribution functions; derivation of macroscopic equilibrium thermodynamics from statistical mechanics. Generally offered: Fall.

PHY 3313. Materials Physics. (3-0) 3 Credit Hours.
Prerequisite: PHY 2103 or consent of instructor. Topics covered include crystal structure and band theory, density functional theory, a survey of properties of metals and semiconductors, phonons, electron-phonon interaction and superconductivity. (Formerly titled "Solid State Physics.") Generally offered: Spring.

PHY 3343. Physics Research Laboratory. (0-6) 3 Credit Hours.
Prerequisites:PHY 1971, PHY 2103 and PHY 2111. This course provides students majoring in physics the opportunity to acquire knowledge in advanced experimental techniques gained through actual participation in real-world physics research labs. (Formerly titled "Advanced Physics Laboratory.").
PHY 4423. Quantum Mechanics II. (3-0) 3 Credit Hours.
Prerequisite: PHY 3583 and PHY 4263, or consent of instructor. Topics include identical particles; time-independent perturbation theory; WKB approximation, time-dependent perturbation theory, the variational principle; the adiabatic approximation and Berry’s phase; scattering. Generally offered: Spring.

PHY 4563. Biophotonics. (3-0) 3 Credit Hours.
Prerequisite: PHY 3443 or consent of instructor. Topics including basic concepts of optical radiation interacting with biological materials will be covered. Discussion of how the unique properties of photons are exploited to understand the biological structure and its function. Photon absorption and emission in biological materials will be considered to explain their applications, including optical imaging as a noninvasive diagnosis tool, photodynamic therapy (PDT), etc.

PHY 4603. Crystallography and Materials Characterization. (3-0) 3 Credit Hours.
Prerequisite: PHY 2103 or consent of instructor. This course will describe the basics of crystal description and will discuss the characterization methods such as x-ray electron and neutron diffraction.

PHY 4623. Nanotechnology. (3-0) 3 Credit Hours.
Prerequisite: PHY 2103 or consent of instructor. This course will describe the fundamentals of nanotechnology, including properties of matter at the nanometric size.

PHY 4653. Introduction to Micro and Nanotechnology. (3-0) 3 Credit Hours.
Prerequisite: PHY 3423 or consent of instructor. Survey of micro and nanofabrication techniques, scaling laws, mechanical, optical, electrical, magnetic and thermal transducers, microfluidic applications, and nanostructures. Structures produced in the laboratory include microactuators, nanoparticles and microfluidics. This course differs from PHY 4623 in that it is oriented more toward fabrication techniques, rather than fundamentals. (Credit cannot be earned for both PHY 4653 and EE 4523.)

PHY 4703. Renewable Energy: Solar Energy Convertors. (3-0) 3 Credit Hours.
Prerequisite: PHY 2103 or consent of instructor. Topics include physics of photovoltaic cells, semiconductors, solar energy convertors, thin film solar cells, nanostructures for solar energy conversion, dye-sensitized photovoltaic cells, fuels from water and sunlight, strategies for high efficiency.

PHY 4833. Molecular Biophysics. (3-0) 3 Credit Hours.
Prerequisite: PHY 1963 or consent of instructor. Topics include interaction between molecules, principles of thermodynamics (enthalpy, entropy, free energy) applied to biomolecules, Brownian motion and diffusion of molecules, structure of proteins, and principles of quantum mechanics. Biophysical techniques: absorption spectroscopy, transient absorption, fluorescence spectroscopy, fluorescence lifetime, FTIR spectroscopy, linear and circular dichroism, x-ray crystallography, and atomic force microscopy. Generally offered: Spring.

PHY 4843. Condensed Matter Theory. (3-0) 3 Credit Hours.
Prerequisites: PHY 3313 and PHY 4263, or consent of instructor. This course offers an introduction to the basic concepts of the quantum condensed matter theory, such as lattice dynamics, elementary excitations, linear response theory, symmetry breaking in Fermi and Bose systems: the physics of superconductivity and superfluidity.