Engineering (EGR) Courses

EGR 1313. Calculus with Engineering Applications. (3-2) 3 Credit Hours.
Prerequisite: Completion of precalculus or satisfactory performance on a placement examination. The first of a two-part integrated physics and calculus course. Calculus topics include applications of derivatives to maximization and curve sketching, evaluation of definite and indefinite integrals and an introduction to differential equations. Physics topics include applications of Newton’s Laws and the concepts of momentum, energy, work and power. Classes meet weekly for three hours of lecture and two hours of problem solving tutorials.

EGR 1323. Physics with Engineering Applications. (3-2) 3 Credit Hours.
Prerequisite: EGR 1313. The second of a two-part integrated physics and calculus course. Calculus topics include applications of derivatives to maximization and curve sketching, evaluation of definite and indefinite integrals and an introduction to differential equations. Physics topics include applications of Newton’s Laws and the concepts of momentum, energy, work and power. Classes meet weekly for three hours of lecture and two hours of problem solving tutorials.

EGR 1343. The Impact of Modern Technologies on Society. (3-0) 3 Credit Hours.
Prerequisites: Basic background in high school mathematics and physical sciences. This course is designed to inform students of the social impact of modern technologies. The course explores the issues faced by society as technology becomes an integral part of human life. The course prepares students to think critically, practically, creatively and responsibly about technological and sociological challenges, and encourages them to examine solutions of their own. The course also explores and discusses the socio-technological interplay. May be applied toward the core curriculum requirement in Social and Behavioral Sciences.

EGR 1403. Technical Communication. (3-0) 3 Credit Hours.
Prerequisite: WRC 1013. Oral, written, graphical and visual communication; technical instructions; design project with presentation; team-work; and personal responsibility. May be applied toward the Core Curriculum requirement in the Component Area Option.

EGR 2103. Statics. (3-0) 3 Credit Hours. (TCCN = ENGR 2301)
Prerequisites: MAT 1224 and PHY 1943. Vector analysis of force systems applied to particles and rigid bodies and free body diagrams. Engineering applications of equilibrium; of moments, internal forces, and friction; and of centroids, centers of gravity, and moments of inertia.

EGR 2213. Statics and Dynamics. (3-0) 3 Credit Hours. (TCCN = ENGR 2303)
Prerequisites: MAT 1224 and PHY 1943. Force, moment, equilibrium, centroids and moments of inertia, kinematics, and kinetics of particles. Not open to students in Civil or Mechanical Engineering. May not be substituted for EGR 2103.

EGR 2323. Applied Engineering Analysis I. (3-1) 3 Credit Hours. (TCCN = MATH 2321)
Prerequisite: MAT 1224. Application of mathematical principles to the analysis of engineering problems using linear algebra and ordinary differential equations (ODE’s). Use of software tools. Topics include: mathematical modeling of engineering problems; separable ODE’s; first-, second-, and higher-order linear constant coefficient ODE’s; characteristic equation of an ODE; systems of coupled first-order ODE’s; matrix addition and multiplication; solution of a linear system of equations via Gauss elimination and Cramer’s rule; rank, determinant, and inverse of a matrix; eigenvalues and eigenvectors; solution of an ODE via Laplace transform; numerical solution of ODE’s. One hour of problem solving recitation.

EGR 2513. Dynamics. (3-0) 3 Credit Hours. (TCCN = ENGR 2302)
Prerequisite: EGR 2103. Kinetics of particles and plane rigid bodies, work and energy, impulse and momentum, equations of motion and engineering applications.

EGR 3303. Engineering Co-op. (0-0) 3 Credit Hours.
Prerequisite: Acceptance into the Cooperative Education in Engineering Program. Designed for students participating in Cooperative Education in Engineering Program. Problems related to students’ work assignments during their work for co-op employers. No more than 3 semester credit hours of Engineering Co-op may apply to a bachelor’s degree. To apply 3 semester credit hours of Engineering Co-op as a technical elective toward a degree in engineering, a student must petition and get approval of a faculty advisor prior to co-op activities. The grade report for the course is either “CR” (satisfactory performance) or “NC” (unsatisfactory performance). Formerly EGR 3301.

EGR 3323. Applied Engineering Analysis II. (3-1) 3 Credit Hours.
Prerequisite: EGR 2323. Application of mathematical principles to the analysis of engineering problems using vector differential and integral calculus, partial differential equations, and Fourier series; complex variables; discrete mathematics; and use of software tools. One hour of problem solving recitation.

EGR 3713. Engineering Economic Analysis. (3-0) 3 Credit Hours.
Prerequisites: ECO 2013 or ECO 2023, and MAT 1224. Time-value of money concepts; techniques for economic evaluation of engineering alternatives; depreciation and taxes; inflation and market rates; contracting practices; funding public projects and related public policy issues.

EGR 4953. Special Studies in Engineering. (3-0) 3 Credit Hours.
Prerequisite: Consent of instructor. An organized course offering the opportunity for specialized study not normally or not often available as part of the regular course offerings. Special Studies may be repeated for credit when topics vary, but not more than 6 semester credit hours, regardless of discipline, will apply to a bachelor’s degree.

EGR 4993. Honors Research. (0-0) 3 Credit Hours.
Prerequisite: Enrollment limited to candidates for college honors during their last two semesters; approval by the College Honors Committee. Supervised research and preparation of an honors thesis. May be repeated once with approval.