Electrical Engineering Courses

EE 1322. Introduction to Electrical and Computer Engineering. (2-1) 2 Credit Hours. (TCCN = ENGR 1201)
Prerequisite: MAT 1073. An introduction to the electrical and computer engineering profession with emphasis on technical communication, team-based engineering design, professional and ethical responsibilities, contemporary issues, and software tools. One hour of recitation session per week. (Formerly EE 1323. Credit cannot be earned for both EE 1323 and EE 1322.)

EE 2213. Electric Circuits and Electronics. (3-0) 3 Credit Hours. (TCCN = ENGR 2305)
Prerequisites: PHY 1963 and concurrent enrollment in, or completion of, EGR 2323. Principles of electrical circuits and systems. Basic circuit elements (resistance, inductance, mutual inductance, capacitance, independent and dependent controlled voltage, and current sources). Topology of electrical networks; Kirchhoff's laws; node and mesh analysis; DC circuit analysis; operational amplifiers; transient and sinusoidal steady-state analysis; AC circuit analysis; first- and second-order circuits; application of Laplace transforms to the analysis of RLC circuits. (Formerly EE 2214. Credit cannot be earned for both EE 2213 and EE 2214.) Generally offered: Fall, Spring.

EE 2423. Network Theory. (3-1) 3 Credit Hours.
Prerequisites: EE 1322 and completion of or concurrent enrollment in EGR 2323 and PHY 1963. Basic network principles; simple resistive circuits; steady state responses to DC and AC signals; node-voltage and mesh-current analysis; source transformations and superposition; Thevenin and Norton equivalents; natural and step transient responses of first and second order circuits; Laplace transform in circuit analysis; and use of SPICE to solve network problems. One hour of problem solving recitation per week. Generally offered: Fall, Spring, Summer.

EE 2511. Logic Design Laboratory. (1-2) 1 Credit Hour.
Prerequisite: Completion of or concurrent enrollment in EE 2513. Introduction to digital design techniques. Implementation of basic digital logic and hardware; combinational circuits, flip-flops, registers, sequential circuits and state-machines. Generally offered: Fall, Spring, Summer.

EE 2513. Logic Design. (3-1) 3 Credit Hours.
Prerequisites: EE 1322 and completion of or concurrent enrollment in CS 2073. Number systems, Boolean algebra, combinational and sequential circuit design; and minimization and implementation. One hour of problem solving recitation per week. Generally offered: Fall, Spring.

EE 3113. Electrical and Computer Engineering Laboratory I. (1-6) 3 Credit Hours.
Prerequisites: EE 2423, EE 2513, and completion of or concurrent enrollment in EE 3313. Introduction to basic measurement equipment and techniques; use of circuit simulation tools; comparison to empirical performance of simple circuits using discrete devices and circuits; simple subsystem circuit design; introduction to automated data acquisition; and laboratory technical communication. Generally offered: Fall, Spring.

EE 3213. Electromagnetic Engineering. (3-1) 3 Credit Hours.
Prerequisites: EGR 3323 and PHY 1963. Review of vector calculus, electrostatics, magnetostatics, electrodynamics, electromagnetic waves, dielectrics, boundary conditions, and RLC circuits. Selected other topics include wave guides, anisotropic crystal optics, transmission lines, fiber optics, reflection and refraction, and special relativity. One hour of problem solving recitation per week. Generally offered: Fall, Spring.

EE 3223. C++ and Data Structures. (3-1) 3 Credit Hours.
Prerequisite: EE 3463. Review of C++ non-OOP concepts, object-oriented programming, inheritance, virtual functions and polymorphism, and operator overloading. In-depth study of data structures including stacks, queues, linked lists, trees, binary trees and its application to binary search trees and sorting. One hour of problem solving recitation per week. Generally offered: Fall.

EE 3233. Systems Programming for Engineers. (3-1) 3 Credit Hours.
Prerequisite: EE 3223. Introduction to Linux, scripting languages including shell scripting, Perl, etc., programming in Python, software version control systems such as SVN and Git, and software testing tools. One hour of problem solving recitation per week.

EE 3313. Electronic Circuits I. (3-1) 3 Credit Hours.
Prerequisites: EE 2423 and PHY 1963. P-N junctions; diode circuits; BJTs and FETs; application to digital and analog circuits; and use of SPICE to solve simple circuits. One hour of problem solving recitation per week. Generally offered: Fall, Spring, Summer.

EE 3323. Electronic Devices. (3-0) 3 Credit Hours.
Prerequisites: CHE 1103 and EE 2423. Introduction to semiconductor materials, fundamentals of quantum mechanics and carrier phenomena, operating principles of P-N junction diodes, metal-semiconductor contacts (Schottky diodes), bipolar-junction transistors, field-effect transistors, photodetectors and optoelectronic devices. Generally offered: Fall, Spring.

EE 3413. Analysis and Design of Control Systems. (3-1) 3 Credit Hours.
Prerequisites: EE 3424 for electrical engineering majors (EGR 2513 and EE 2213 for mechanical engineering majors). Modeling, analysis, and design of linear automatic control systems; time and frequency domain techniques; stability analysis, state variable techniques, and other topics. Control systems analysis and design software will be used. One hour of problem solving recitation per week. Generally offered: Fall, Spring, Summer.

EE 3424. Mathematics in Signals and Systems. (4-1) 4 Credit Hours.
Prerequisites: EE 2423 and EGR 2323. Basic concepts, mathematical representation of signals and systems, graphs of functions, elements of complex numbers, partial fraction expansion, properties of basic functions, including sinusoidal and complex exponential signals, phasors, time and amplitude transformations of signals, properties of signals and classification of systems, Dirac delta function, step function, convolution integral, impulse response, frequency response function for linear time invariant systems, differential-equation models, response to real sinusoidal signals, ideal filters, periodic functions and Fourier series, continuous-time Fourier transform, energy and power spectral density functions, Laplace transforms in linear system analysis, differential equations with constant coefficients, transfer functions and state-variable models. One hour of problem solving recitation per week. (Formerly EE 3423. Credit cannot be earned for both EE 3424 and EE 3423.)
EE 3463. Microcomputer Systems I. (3-1) 3 Credit Hours.
Prerequisites: EE 2513 and CS 2073. Introduction to assembly- and C-language programming; architecture, peripherals, operating system interfacing principles, and development tools; and software documentation techniques. One hour of recitation per week. Generally offered: Fall, Spring, Summer.

EE 3513. Electromechanical Systems. (3-0) 3 Credit Hours.
Prerequisite: EGR 2213. Principles of electromechanical energy conversion; polyphase circuits; dynamic analysis and simulation of energy-transfer devices; and power devices. Generally offered: Fall, Spring.

EE 3523. Discrete Signals and Systems. (3-0) 3 Credit Hours.
Prerequisite: EE 3424. Time and frequency characteristics of signals and systems, sampling, discrete-time convolution, and applications of discrete-time Fourier and Z-transforms to systems. MATLAB exercises. (Formerly titled “Signals and Systems II.”) Generally offered: Fall, Spring.

EE 3533. Random Signals and Noise. (3-0) 3 Credit Hours.
Prerequisites: EE 3424 and EGR 2323. Probability and random variables, conditional distribution, conditional density function; operations on random variables; Central Limit Theorem; random process; spectral analysis of random processes; and linear systems with random inputs. Generally offered: Fall, Spring.

EE 3563. Digital Systems Design. (2-3) 3 Credit Hours.
Prerequisites: EE 2511 and EE 2513. Introduction to switching theory; design of complex combinational and sequential circuits; analysis of hazards and fault detection, location, and tolerance; and design and verification of complex circuitry using schematic entry, functional modeling, and mixed-mode simulation. Generally offered: Fall.

EE 4113. Electrical and Computer Engineering Laboratory II. (1-6) 3 Credit Hours.
Prerequisites: EE 3113, and completion of or concurrent enrollment in either EE 3563 for computer engineering majors or EE 4313 for electrical engineering majors. Complex electronic circuit subsystem design, improving measurement system performance, impact of circuit parasitics, signal integrity, electromagnetic interference, thermal analysis, printed circuit board layout, and technical communication. Generally offered: Fall, Spring.

EE 4123. Power Engineering Laboratory. (1-4) 3 Credit Hours.
Prerequisites: EE 3113, completion of or concurrent enrollment in EE 4753 and EE 4763. Power Electronics Laboratory to analyze and test DC-DC converters, voltage mode and current mode control. Power Systems Simulation Laboratory to analyze and design power systems that include power flow, transmission line, transient and fault analysis.

EE 4243. Computer Organization and Architecture. (2-3) 3 Credit Hours.
Prerequisite: EE 3463. Design of advanced state machines and computer systems, and processor design using computer-assisted design and analysis tools. Generally offered: Spring.

EE 4313. Electronic Circuits II. (3-0) 3 Credit Hours.
Prerequisites: EE 3313 and concurrent enrollment in, or completion of, EE 3323. Multiple transistor circuits; feedback and frequency response analysis; operational amplifier analysis and design; and introduction to integrated circuit design and analysis. Design of analog and digital circuits; and use of SPICE to analyze complex circuits. Generally offered: Fall, Spring, Summer.

EE 4323. Dielectric and Optoelectronic Engineering Laboratory. (2-4) 3 Credit Hours.
Prerequisites: EE 3213, completion of or concurrent enrollment in EE 3323 for Topic 1. Principles of dielectric devices and optical components and systems. May be repeated for credit when topics vary. Topic 1: Capacitance, resistance, and inductance device evaluations, impedance frequency and temperature spectrum analysis, characterization of tunable dielectric microwave materials, electromechanical coupling of piezoelectric devices. Topic 2: Lasers, photo-detectors, phase locked interferometer, electro-optical and nonlinear optic devices, optical image processing, Fourier optics, holographic recording, and photorefractive storage. Generally offered: Spring.

EE 4443. Discrete-Time and Computer-Controlled Systems. (3-0) 3 Credit Hours.
Prerequisites: EE 3413 and completion of or concurrent enrollment in EE 3523. Sampled-data techniques applied to the analysis and design of digital control systems; stability criteria; compensation; and other topics. Generally offered: Fall.

EE 4453. Selected Topics in Digital Signal Processing. (3-0) 3 Credit Hours.
Prerequisite: EE 4643. Theoretical basis for signal processing and applications. Topics include modeling of biological systems; signal processing in computer security; data and image encryption; digital image compression; pattern recognition; biomedical signal and image processing; signal processing for system biology; genomic signal processing and statistics; speech and audio signal processing; multimedia signal processing. May be repeated for credit when topics vary. (Formerly titled “Principles of Bioengineering and Bioinstrumentation.”)

EE 4513. Introduction to VLSI Design. (2-3) 3 Credit Hours.
Prerequisites: EE 3323 and EE 3463. Design of integrated digital systems; logic simulation, standard cell libraries, circuit simulation, and other computer-aided design tools; and integrated circuit processing and device modeling. Generally offered: Fall.

EE 4523. Introduction to Micro and Nanotechnology. (2-3) 3 Credit Hours.
Prerequisite: Completion of or concurrent enrollment in EE 3323. Survey of microfabrication techniques, scaling laws, mechanical, optical and thermal transducers, microfluidic applications, nanostructures. (Credit cannot be earned for both EE 4523 and PHY 4653.)

EE 4543. Advanced Topics in Micro and Nanotechnology. (3-0) 3 Credit Hours.
Prerequisite: Completion of or concurrent enrollment in EE 3323. Topics to be selected from advanced sensors, actuators, engineered materials, device physics, microwave applications of MEMS structures, photonics, microelectronic devices, analog IC design, mixed-signal circuits and systems. May be repeated for credit when topics vary.

EE 4553. VLSI Testing. (2-3) 3 Credit Hours.
Prerequisite: EE 4643. Faults modeling and simulation; stuck at faults, bridging faults, and functional testing; self-testing concepts; standard and test patterns; device and system testing; and design for testability.
EE 4563. FPGA-Based System Design. (3-0) 3 Credit Hours.
Prerequisites: EE 3463 and EE 3563. FPGAs replace digital circuits in most applications. This course addresses underlying theory and applications: Introduction to Field Programmable Gate Arrays; General-Purpose FPGA Architecture; Reconfigurable Computing Devices and Systems; Hardware Description Language for FPGAs; synthesizing FPGA interconnections; Global Timing Constraints; evaluating and optimizing problems for FPGA implementations; Arithmetic, Precision Analysis & Floating Point; FPGA vs. CPU partitioning.

EE 4583. Microcomputer Systems II. (2-3) 3 Credit Hours.
Prerequisite: EE 3463. Advanced microprocessor-based system design; high-speed bus interfacing, coprocessors, and other specialized input/output devices; and high-level languages and software performance analysis. Generally offered: Spring.

EE 4593. Embedded System Design. (3-0) 3 Credit Hours.
Prerequisites: EE 3463 and EE 3563. The goal of this course is to develop a comprehensive understanding of the technologies behind embedded systems, particularly, those using computing elements: Embedded processor selection, hardware/firmware partitioning, circuit layout, circuit debugging, development tools, firmware architecture, firmware design, and firmware debugging. C programming of embedded microcontrollers, the function and use of common peripherals, and the programming and simulation (using VHDL/Verilog) of custom single-purpose processors.

EE 4613. Communication Systems. (3-0) 3 Credit Hours.
Prerequisites: EE 3424 and EE 3533. Basic theory and principles of modern analog and digital communication systems; signal and noise analysis, signal-to-noise ratio, and circuit implementations.

EE 4623. Digital Filtering. (3-0) 3 Credit Hours.
Prerequisite: EE 3424 and completion of or concurrent enrollment in EE 3463. Design and implementation of FIR and IIR filters, hardware, and software; and topics from adaptive filtering, neural networks. MATLAB exercises.

EE 4643. Digital Signal Processing. (3-0) 3 Credit Hours.
Prerequisites: Completion of or concurrent enrollment in EE 3523 and EE 3533. Transform techniques for discrete signal processing; discrete representation and analysis of digital filters and other topics; and A/D and D/A conversion and associated filtering techniques. Generally offered: Spring.

EE 4653. Digital Communications. (3-0) 3 Credit Hours.
Prerequisites: EE 3424 and EE 3533. Basic digital modulation schemes: ASK, BPSK, QPSK, FSK, and QAM modulation, binary signal detection, matched filtering, bit error rate, intersymbol interference, equalization, signal-space methods, optimum receiver, fundamentals of information theory and block coding, convolutional coding and spread spectrum.

EE 4663. Digital Image Processing. (3-0) 3 Credit Hours.
Prerequisite: EE 3523. Fundamentals and some practical applications of digital image processing. Topics include image formation, sampling, and quantization; image motion and detector noise; future extraction; image enhancement and restoration by spatial filtering and maximum entropy; image coding for bandwidth compression by DPCM; transform coding, subband coding; and use of MATLAB for image processing. Generally offered: Fall.

EE 4673. Data Communication and Networks. (2-3) 3 Credit Hours.
Prerequisites: EE 3223 and completion of or concurrent enrollment in EE 4613. Introduction to data communication networks, electrical interface, data transmission, WAN and LAN network overview, transmission devices, transmission errors and methods of correction, and protocols.

EE 4683. Wireless Communications. (3-0) 3 Credit Hours.
Prerequisites: EE 3424 and EE 3533. Common wireless systems and standards. Cellular radio concepts; frequency reuse and handoff strategies. Large-scale path loss models. Small-scale fading and multipath. Modulation techniques for mobile radio: performances in fading and multipath channels. Multiple access techniques. RF hardware realization issues.

EE 4693. Fiber Optic Communications. (3-0) 3 Credit Hours.
Prerequisites: EE 3313, EE 3424, and completion of or concurrent enrollment in EE 3213. Light propagation using ray and electromagnetic mode theories, dielectric slab waveguides, optical fibers, attenuation and dispersion in optical fibers, optical fiber transmitters and receivers, electro-optical devices, and optical fiber measurement techniques.

EE 4723. Intelligent Robotics. (3-1) 3 Credit Hours.
Prerequisite: EE 3413 or ME 3543. Coordinate transformations, forward and inverse kinematics, Jacobian and static forces, path planning techniques, dynamics, design, analysis and control of robots, sensing and intelligence. (Formerly EGR 4723 and ME 4713. Credit cannot be earned for both EE 4723 and either EGR 4723 or ME 4713.) Generally offered: Spring.

EE 4733. Intelligent Control. (3-0) 3 Credit Hours.
Prerequisite: EE 3413. Neural networks and fuzzy logic basics, approximation properties, conventional adaptive controller design and analysis, intelligent controller design and analysis techniques for nonlinear systems, and closed-loop stability. Generally offered: Spring.

EE 4743. Embedded Control Systems. (2-3) 3 Credit Hours.
Prerequisites: EE 3413 and EE 3463. Embedded system principles and control system concepts, programming, tools and their applications, embedded controls design, and analysis of industrial processes.

EE 4753. Analysis of Power Systems. (3-0) 3 Credit Hours.
Prerequisite: EE 3413. Electric energy and environment, principles of power generation, transmission and distribution, power flow analysis, faults and transient stability analysis, power systems control and renewable energy systems. Generally offered: Fall.

EE 4763. Power Electronics. (3-0) 3 Credit Hours.
Prerequisites: EE 3113 and EE 3413. Switch-mode power conversion, analysis and control of DC-DC converters, DC-AC inverters for motor drives and to interface renewable energy sources with utility, AC-DC rectifiers, applications in sustainable energy systems, introduction to power semiconductor devices and magnetic components. Generally offered: Spring.

EE 4773. Electric Drives. (3-0) 3 Credit Hours.
Prerequisite: Completion of or concurrent enrollment in EE 3513. Analysis of electric machines in combination with power electronics; torque, speed and position control; space vectors, motor drive inverter; vector control; wind energy conversion. Generally offered: Fall.

EE 4811. Electrical and Computer Engineering Design I. (1-1) 1 Credit Hour.
Prerequisites: EE 4313 for Electrical Engineering majors or EE 3563 for Computer Engineering majors; and concurrent enrollment in, or completion of, EE 4113 for both EE and CPE majors, EE 3233 for CPE majors. Business planning and project management in engineering design; discussion of ethical and social issues in design; and selection of a design project, development of a detailed design proposal, and approval of a design project. Generally offered: Fall, Spring.
EE 4813. Electrical and Computer Engineering Design II. (2-3) 3 Credit Hours.
Prerequisites: EE 4113 and EE 4811. Complex system design; advanced ATE; project management, proposals, status reporting, formal oral and written technical reports, and business plans; open-ended design project considering safety, reliability, environmental, economic, and other constraints; and ethical and social impacts. Generally offered: Fall, Spring.

EE 4911. Independent Study. (0-0) 1 Credit Hour.
Prerequisites: Permission in writing (form available) from the instructor, the student’s advisor, the Department Chair, and Dean of the College. Independent reading, research, discussion, and/or writing under the direction of a faculty member. May be repeated for credit, but not more than 6 semester credit hours of independent study, regardless of discipline, will apply to a bachelor’s degree.

EE 4912. Independent Study. (0-0) 2 Credit Hours.
Prerequisites: Permission in writing (form available) from the instructor, the student’s advisor, the Department Chair, and Dean of the College. Independent reading, research, discussion, and/or writing under the direction of a faculty member. May be repeated for credit, but not more than 6 semester credit hours of independent study, regardless of discipline, will apply to a bachelor’s degree.

EE 4913. Independent Study. (0-0) 3 Credit Hours.
Prerequisites: Permission in writing (form available) from the instructor, the student’s advisor, the Department Chair, and Dean of the College. Independent reading, research, discussion, and/or writing under the direction of a faculty member. May be repeated for credit, but not more than 6 semester credit hours of independent study, regardless of discipline, will apply to a bachelor’s degree.

EE 4953. Special Studies in Electrical and Computer Engineering. (3-0) 3 Credit Hours.
Prerequisites vary with the topic (refer to the course syllabus on Bluebook or contact the instructor). An organized course offering the opportunity for specialized study not normally or not often available as part of the regular course offerings. Special Studies may be repeated for credit when topics vary, but not more than 6 semester credit hours, regardless of discipline, will apply to a bachelor’s degree. Generally offered: Fall, Spring.