Computer Science (CS)

NOTE: All prerequisites for Computer Science (CS) courses must be completed with a grade of "C-" or better.

Computer Science (CS) Courses

CS 1023. Cultural Implications of the Information Society. (3-0) 3 Credit Hours.
This course offers an examination of the modern information society and the influences of technological advances on society and culture. The emphasis is on information and its management from ethical, social, and legal perspectives. Students will make extensive use of the World Wide Web. Generally offered: Fall, Spring.

CS 1033. Microcomputer Applications. (3-0) 3 Credit Hours.
Study of the uses of the computer and the organization and visualization of data. Topics will be selected from library searching, networking, e-mail, spreadsheets, databases, authoring packages, multimedia and hypertext applications, presentation graphics, and legal/ethical issues. May not be applied toward a major in computer science. (Formerly CS 2083. Credit cannot be earned for both CS 1033 and CS 2083.) Generally offered: Spring.

CS 1063. Introduction to Computer Programming I. (3-0) 3 Credit Hours. (TCCN = COSC 1336)
Prerequisite: MAT 1073 or the equivalent. An introduction to computer programming using a modern object-oriented computer language. Topics include assignment, decisions, loops, methods and arrays using objects. Generally offered: Fall, Spring, Summer.

CS 1083. Introduction to Programming I for Computer Scientists. (3-0) 3 Credit Hours. (TCCN = COSC 1336)
Prerequisite: MAT 1073 or the equivalent. An introduction to computer programming emphasizing structured programming, problem solving, and algorithmic thinking. Topics include assignment, decisions, loops, methods, arrays, and use of objects. Students intending to major or minor in Computer Science should take this course instead of CS 1063.

CS 1143. Web Design. (3-0) 3 Credit Hours.
Prerequisite: Computer literacy. Introduction to the process of planning, designing, and building a Web site. Concepts required to design and build interactive Web sites, including page design using XHTML, tables, CSS, and JavaScript. Design tools will be used to design and maintain Web sites.

CS 1153. Game Programming. (3-0) 3 Credit Hours.
Prerequisite: Computer literacy. Introduction to game design and programming. Common practices used in the video game industry today will also be introduced. Students will learn the basics of creating a PC game through lecture material, hands-on laboratories, and a final project in which the students will build a simple game. Generally offered: Fall.

CS 1173. Data Analysis and Visualization. (3-0) 3 Credit Hours.
Prerequisite: MAT 1023. Introduction to computation for data analysis and visualization in a programming language such as MATLAB or R. Programming concepts including functions, scripting, loops and logic, handling of vectors and structured data are explored in the context of working with and plotting real data. May be applied toward the Core Curriculum requirement in the Component Area Option. (Formerly titled “Computation for Scientists and Engineers.”) Generally offered: Fall, Spring, Summer.

CS 1711. Introduction to Computer Programming II Recitation. (1-0) 1 Credit Hour. (TCCN = COSC 1437)
Prerequisite: CS 1083. Concurrent enrollment in CS 1713 is required. Recitation to accompany CS 1713. (Formerly titled “Introduction to Computer Science Recitation.”) Generally offered: Fall, Spring, Summer.

CS 1713. Introduction to Computer Programming II. (3-0) 3 Credit Hours. (TCCN = COSC 1437)
Prerequisite: CS 1083. Concurrent enrollment in CS 1711 is required. Extended programming concepts including multidimensional arrays, pointers, dynamic memory allocation/deallocation and recursion. Problem solving methods, algorithm development and implementation. (Formerly titled “Introduction to Computer Science.”) Generally offered: Fall, Spring, Summer.

CS 2073. Computer Programming with Engineering Applications. (3-0) 3 Credit Hours. (TCCN = ENGR 2304)
Prerequisites: MAT 1214 and completion of or concurrent enrollment in MAT 1224. Algorithmic approaches to problem solving and computer program design for engineers. Engineering and mathematically-oriented problem sets will be emphasized, including nonnumeric applications. Searching, sorting, linked lists, and data typing will be introduced. May not be applied toward a major in computer science. Generally offered: Fall, Spring.

CS 2121. Data Structures Recitation. (1-0) 1 Credit Hour. (TCCN = COSC 2436)
Prerequisite: CS 1713. Concurrent enrollment in CS 2123 is required. Recitation to accompany CS 2123. (Formerly CS 1721. Credit cannot be earned for both CS 2121 and CS 1721.) Generally offered: Fall, Spring, Summer.

CS 2123. Data Structures. (3-0) 3 Credit Hours. (TCCN = COSC 2436)
Prerequisite: CS 1713. Concurrent enrollment in CS 2121 is required. Abstract data structures (stacks, queues, lists, trees), recursion, sorting, and searching. Implementation of data structures using explicit memory management, and introduction to abstract data type design and encapsulation. (Formerly CS 1723. Credit cannot be earned for both CS 2123 and CS 1723.) Generally offered: Fall, Spring, Summer.

CS 2153. Game Design. (3-0) 3 Credit Hours.
Prerequisites: CS 1153. This course builds upon the lessons learned in CS 1153 Game Programming to examine in more detail the design and development of electronic games. The fundamentals of game design and development of electronic games. The fundamentals of game design will be examined in detail and the students will be responsible for building a game using a popular game engine.

CS 2233. Discrete Mathematical Structures. (3-0) 3 Credit Hours. (TCCN = MATH 2305)
Prerequisites: CS 1713 and MAT 1214. Survey and development of theoretical tools suitable for describing algorithmic applications. Propositional and predicate calculus, proofs, induction, order notation, recurrences and discrete structures. (Formerly 3233. Credit cannot be earned for both CS 2233 and CS 3233.) Generally offered: Fall, Spring, Summer.

CS 3333. Mathematical Foundations of Computer Science. (3-0) 3 Credit Hours.
Prerequisites: CS 1713 and MAT 1224. Survey and development of mathematical and statistical tools suitable for describing algorithmic applications. Vectors, matrices, combinatorics, probability and statistical models. Generally offered: Fall, Spring, Summer.
CS 3341. Analysis of Algorithms Recitation. (1-0) 1 Credit Hour. Prerequisites: CS 2123, CS 2233, and CS 3343. Concurrent enrollment in CS 3343 is required. Recitation to accompany CS 3343. Generally offered: Fall, Spring.

CS 3343. Analysis of Algorithms. (3-0) 3 Credit Hours. Prerequisites: CS 2123, CS 2233, and CS 3333. Concurrent enrollment in CS 3341 is required. Analysis of the performance of algorithms; discussion of programming techniques and data structures used in the writing of effective algorithms. Generally offered: Fall, Spring.

CS 3421. Systems Programming Recitation. (1-0) 1 Credit Hour. Prerequisite: CS 2123. Concurrent enrollment in CS 3423 is required. Recitation to accompany CS 3423. (Formerly CS 2411. Credit cannot be earned for both CS 3421 and CS 2411.) Generally offered: Fall, Spring.

CS 3423. Systems Programming. (3-0) 3 Credit Hours. Prerequisite: CS 2123. Concurrent enrollment in CS 3421 is required. A study of systems-level programming in a specific system (at present, Unix). Focus on concepts and tools to support the construction of systems programs. (Formerly CS 2413. Credit cannot be earned for both CS 3423 and CS 2413.) Generally offered: Fall, Spring.

CS 3433. Principles of Computer and Information Security. (3-0) 3 Credit Hours. Prerequisite: CS 3423. An introduction to the protection of computer systems and networks. Topics will include authentication, access control, malicious software, formal security methods, firewalls, intrusion detection, cryptography and information hiding, risk management, computer forensics, and ethics. Generally offered: Fall.

CS 3443. Application Programming. (3-0) 3 Credit Hours. Prerequisite: CS 2123. Advanced application development in a current object-oriented language. Introduction to the software life cycle, best programming practices, and modern development tools. Generally offered: Fall, Spring.

CS 3723. Programming Languages. (3-0) 3 Credit Hours. Prerequisites: CS 2233 and CS 3443. An introduction to high-level procedural, functional, and object-oriented programming languages, their theoretical foundations, organization, and implementation. Topics include formal syntax, compilers and interpreters, type systems, scoping and activation records, control structures, and data abstraction. Generally offered: Fall, Spring.

CS 3731. Operating Systems Recitation. (1-0) 1 Credit Hour. Prerequisites: CS 3423, CS 3443, and CS 3843. Concurrent enrollment in CS 3733 is required. Recitation to accompany CS 3733. Generally offered: Fall, Spring.

CS 3733. Operating Systems. (3-0) 3 Credit Hours. Prerequisites: CS 3423, CS 3443, and CS 3843. Concurrent enrollment in CS 3731 is required. An introduction to the functions and major techniques of a modern multiprogramming operating system. Includes exposure to the fundamentals of processor management, process synchronization, memory management, and peripheral management. Generally offered: Fall, Spring.

CS 3743. Introduction to Database Systems. (3-0) 3 Credit Hours. Prerequisites: CS 2233 and CS 3423. Study of fundamentals of database systems. Topics include basic concepts, various data models, database design, storage systems, indexing and hashing, database application design and implementation, and commercially available database systems.

CS 3753. Introduction to Data Science. (3-0) 3 Credit Hours. Prerequisites: CS 2123, CS 2233, and CS 3333. Study of fundamental methods and models of data science. Topics include data management, Extract-Transform-Loading methods, machine learning models, and data visualization. Use of a specialized programming language is emphasized.

CS 3773. Software Engineering. (3-0) 3 Credit Hours. Prerequisite: CS 3443. Introduction to different aspects of software engineering with the concentration on processes, methods, and tools for developing reliable software-centered systems. Study of software development process models, project management, a variety of modeling notations, requirement analysis, architecture design methods, and testing techniques. Generally offered: Fall, Spring.

CS 3793. Introduction to Artificial Intelligence. (3-0) 3 Credit Hours. Prerequisite: CS 3343. Discussion of theorem-proving by machine; includes computational linguistics, psychological modeling, and computer games.

CS 3841. Computer Organization Recitation. (1-0) 1 Credit Hour. Prerequisite: CS 2123. Concurrent enrollment in CS 3843 is required. Recitation to accompany CS 3843. (Formerly CS 2731. Credit cannot be earned for both CS 3841 and CS 2731.) Generally offered: Fall, Spring.

CS 3843. Computer Organization. (3-0) 3 Credit Hours. Prerequisite: CS 2123. Concurrent enrollment in CS 3841 is required. Organization of a computer system is introduced at block diagram level. Programming in assembly language and understanding the macroarchitecture of a computer is emphasized. Fundamentals of digital systems are introduced and the designs of various components used are investigated. (Formerly CS 2733. Credit cannot be earned for both CS 3843 and CS 2733.) Generally offered: Fall, Spring.

CS 3851. Computer Architecture Recitation. (1-0) 1 Credit Hour. Prerequisites: CS 3423 and CS 3843. Concurrent enrollment in CS 3853 is required. Recitation to accompany CS 3853. (Formerly CS 4751. Credit cannot be earned for both CS 3851 and CS 4751.) Generally offered: Fall, Spring.

CS 3853. Computer Architecture. (3-0) 3 Credit Hours. Prerequisites: CS 3423 and CS 3843. Concurrent enrollment in CS 3851 is required. Instruction set architecture, datapath and control unit design, advanced computer arithmetic, pipelining, memory hierarchy and I/O subsystem, performance issues. (Formerly CS 4753. Credit cannot be earned for both CS 3853 and CS 4753.) Generally offered: Fall, Spring.

CS 3873. Computer Networks. (3-0) 3 Credit Hours. Prerequisite: CS 3843. Network architecture, TCP/IP protocol suite, routing, data-link layer protocols, medium access control protocols, error detection and recovery, local area networks, wireless and mobile networks. (Formerly CS 4873. Credit cannot be earned for both CS 3873 and 4873.) Generally offered: Spring.

CS 4223. Bioinformatics and Big Data. (3-0) 3 Credit Hours. Prerequisite: CS 3343 or consent of instructor. Hands-on introduction to large-scale analysis of heterogeneous data with emphasis on integrating information and tools from publicly available biological databases to address complex problems.

CS 4233. Introduction to Computational Biology and Bioinformatics. (3-0) 3 Credit Hours. Prerequisite: CS 3343. Study of algorithmic and statistical techniques in modeling and analyzing large-scale biological data such as DNA sequences, gene expression, and gene networks. Topics include fast string matching, sequence alignment, frequent pattern mining, clustering, classification, and significance testing.
CS 4313. Automata, Computability, and Formal Languages. (3-0) 3 Credit Hours.
Prerequisite: CS 3343. Discussion of abstract machines (finite state automata, pushdown automata, and Turing machines), formal grammars (regular, context-free, and type 0), and the relationship among them.

CS 4353. Unix and Network Security. (3-0) 3 Credit Hours.
Prerequisite: CS 3433. A technical survey of the fundamentals of computer and information security. Issues include cryptography, authentication, attack techniques at both the OS and network level, defense techniques, intrusion detection, scan techniques and detection, forensics, denial of service techniques and defenses, libpcap, libdnet and libnet programming. Generally offered: Spring.

CS 4363. Cryptography. (3-0) 3 Credit Hours.
Prerequisites: CS 3343 and CS 3433. A course in pure and applied cryptography, with emphasis on theory. Topics may include conventional and public-key cryptosystems, signatures, pseudo-random sequences, hash functions, key management, and threshold schemes.

CS 4373. Introduction to Data Mining. (3-0) 3 Credit Hours.
Prerequisite: CS 3343 or consent of instructor. Principles, techniques, systems and evaluation of data mining. Topics may include data preprocessing, frequent pattern mining, association mining, classification and prediction, cluster analysis, and advanced topics such as mining streams, time-Series, texts, and graphs.

CS 4383. Computer Graphics. (3-0) 3 Credit Hours.
Prerequisites: CS 2123 and CS 3343. An introduction to two- and three-dimensional generative computer graphics. Display devices, data structures, mathematical transformations, and algorithms used in picture generation, manipulation, and display.

CS 4393. User Interfaces. (3-0) 3 Credit Hours.
Prerequisite: CS 3443. Study of advanced user interface issues. User interface design, human factors, usability, GUI programming models, and the psychological aspects of human-computer interaction. Generally offered: Fall.

CS 4413. Web Technologies. (3-0) 3 Credit Hours.
Prerequisite: CS 3423. Fundamentals of Web and component technology: markup languages, layout design, client and server side programming, database and Web integration. Generally offered: Fall.

CS 4593. Topics in Computer Science. (3-0) 3 Credit Hours.
Prerequisite: Consent of instructor. Advanced topics in an area of computer science. May be repeated for credit when topics vary. Generally offered: Spring.

CS 4613. Compiler Construction. (3-0) 3 Credit Hours.
Prerequisite: CS 3343. Design, execution, and analysis of simulation models, discrete event simulation techniques, input and output analysis, random numbers, and simulation tools and languages.

CS 4633. Simulation. (3-0) 3 Credit Hours.
Prerequisite: CS 3343. Design, execution, and analysis of simulation models, discrete event simulation techniques, input and output analysis, random numbers, and simulation tools and languages.

CS 4653. Software and Malware Reverse Engineering. (3-0) 3 Credit Hours.
Prerequisite: CS 3433. An introduction to the basic procedures to reverse engineering of software, hardware and malware.

CS 4663. Distributed and Cloud Systems Security. (3-0) 3 Credit Hours.
Prerequisite: CS 3733. A study of the uses and security issues of virtualization, distributed systems and cloud systems.
CS 4853. Systems Development and Programming. (3-0) 3 Credit Hours.
Prerequisite: CS 3733. Concepts and knowledge on system booting,
memory management, process and scheduling, interrupt handling,
system calls, file systems, networking, device drivers and module
programming. Runtime systems. Programming kernel modules in Linux.

CS 4863. Distributed Computing and Systems. (3-0) 3 Credit Hours.
Prerequisite: CS 3733. A distributed system comprises computers
working together as a single unit. These systems are essential to the
understanding of present and future computer applications. This course
will include the following topics: concurrent processing, threads, network
programming, distributed file systems, remote procedure calls, distributed
objects, client-server models, and Internet protocols.

CS 4911. Independent Study. (0-0) 1 Credit Hour.
Prerequisites: Permission in writing (form available) from the instructor,
the student’s advisor, the Department Chair, and the Dean of the
College in which the course is offered. Independent reading, research,
discussion, and/or writing under the direction of a faculty member.
May be repeated for credit, but not more than 6 semester credit hours,
regardless of discipline, will apply to a bachelor’s degree.

CS 4912. Independent Study. (0-0) 2 Credit Hours.
Prerequisites: Permission in writing (form available) from the instructor,
the student’s advisor, the Department Chair, and the Dean of the
College in which the course is offered. Independent reading, research,
discussion, and/or writing under the direction of a faculty member.
May be repeated for credit, but not more than 6 semester credit hours,
regardless of discipline, will apply to a bachelor’s degree.

CS 4913. Independent Study. (0-0) 3 Credit Hours.
Prerequisites: Permission in writing (form available) from the instructor,
the student’s advisor, the Department Chair, and the Dean of the
College in which the course is offered. Independent reading, research,
discussion, and/or writing under the direction of a faculty member.
May be repeated for credit, but not more than 6 semester credit hours,
regardless of discipline, will apply to a bachelor’s degree. Generally
offered: Fall, Spring, Summer.

CS 4933. Internship in Computer Science. (0-0) 3 Credit Hours.
Prerequisites: Junior or senior standing, an overall 2.5 grade point
average, and permission in writing from the instructor, the Department
Chair, and the Dean of the College of Sciences. The opportunity for a
semester-long work experience in a private business or public agency
in a computer science-related position. Not more than 3 semester credit
hours of CS 4933, and not more than a total of 6 semester credit hours
of CS 4933 and independent study courses may count toward the
Bachelor of Science degree in Computer Science. The grade report for
this course is either “CR” (satisfactory participation in the internship) or
“NC” (unsatisfactory participation in the internship). Generally offered:
Fall, Summer.

CS 4953. Special Studies in Computer Science. (3-0) 3 Credit Hours.
Prerequisite: Consent of instructor. An organized course offering the
opportunity for specialized study not normally or not often available as
part of the regular course offerings. Special Studies may be repeated
for credit when topics vary, but not more than 6 semester credit hours,
regardless of discipline, will apply to a bachelor’s degree. Generally
offered: Summer.

CS 4973. Advanced Topics in Data Science. (3-0) 3 Credit Hours.
Prerequisite: Consent of instructor. Advanced topics in an area of data
science. May be repeated for credit when topics vary.

CS 4993. Honors Research. (0-0) 3 Credit Hours.
Prerequisites: Enrollment limited to candidates for College Honors during
their last two semesters; approval by the College Honors Committee.
Supervised research and preparation of an honors thesis. May be
repeated once with approval.