Astronomy (AST) Courses

AST 1013. Introduction to Astronomy. (3-0) 3 Credit Hours. (TCCN = ASTR 1303)
Prerequisite: MAT 1023 or MAT 1073. A descriptive course including the development of astronomy, its methods, and the motions, laws, and evolution of the solar system. Topics include general properties and types of stars, unusual stellar objects such as quasars and black holes, galaxies, evolution, and cosmology. Occasional evening viewing sessions are held. May apply toward the Core Curriculum requirement in Life and Physical Sciences.

AST 1031. Introduction to Astronomy Laboratory. (1-2) 1 Credit Hour. (TCCN = ASTR 1103)
Prerequisite: Completion of or concurrent enrollment in AST 1013, or consent of instructor. This course is an introduction to practical observational techniques, using the school’s telescopes as well as student-built classical instruments and exercises in the use of the telescope and certain other astronomical instruments, including simple observations, measurements, and photography. Topics include in-class projects on spectroscopy, stellar positions, solar heating, planetary motions, solar and astrophotography, star clusters, galaxies, and cosmology.

AST 1033. Exploration of the Solar System. (3-0) 3 Credit Hours. (TCCN = ASTR 1304)
Prerequisite: MAT 1023 or MAT 1073. A descriptive course of modern studies of the solar system, including a survey of the properties of the planets and smaller bodies (asteroids and comets) and current theories of the origin of planetary systems. Topics include results from the latest satellite, robotic, and human exploration of space, origin of life in the solar system, existence of other planetary systems, possibilities of space colonization, and the search for extraterrestrial life (techniques and possibilities of communication with other intelligences). May apply toward the Core Curriculum requirement in Life and Physical Sciences.

AST 1043. Current Topics in Astronomy. (3-0) 3 Credit Hours.
Prerequisite: MAT 1023 or MAT 1073. Astronomy receives considerable attention from the media and the public in general. It allows us to ask fundamental questions about who we are, where we come from, and where we will end up as a world. This course will concentrate on the areas of astronomy that are currently most covered by the media—planet detection and interpretation, recent NASA spacecraft missions, supermassive black holes, gamma-ray bursters, dark matter and dark energy in the Universe, and other significant developments that arise during the semester. This course will cover each of these in depth, but will also concentrate on the reaction that the media has had on them. The media and public often have an uncanny ability to probe directly to the main reasons for why scientists study a particular problem. The student who completes this course will be expected to not only have a better scientific understanding of the current hot topics in astronomy, but also understand how the media can actually drive science in general.

AST 1073. Astrobiology: Search for Life in the Universe. (3-0) 3 Credit Hours.
Prerequisite: MAT 1023 or MAT 1073. The concept that life might exist elsewhere besides the Earth has intrigued humankind for centuries. Technology has now enabled this fundamental question to be pursued with substantial international scientific vigor. Within the Solar System, several Mars probes, as well probes to the moons of Jupiter (Europa) and Saturn (Titan), are being developed with specific emphasis on the development of in-situ instrumentation to detect the presence of life. Beyond the Solar System, the search for life signs has gained momentum with the rapid growth in the number of known exoplanets. While the detection of exoplanets is challenging conventional views of planet formation, it has also created opportunities for new observational methods to detect and characterize habitability and bio-signatures. The study of life on Earth has revealed surprising constraints on the limits of life with the discovery of extremophiles capable of surviving in near-freezing, near-boiling, nonaqueous, or high-radiation environments. This interdisciplinary course involves topics in astronomy, planet formation, and biology.

AST 1113. Astronomy for Educators. (3-0) 3 Credit Hours.
Prerequisite: MAT 1023 or MAT 1073. This is a one-semester introductory survey course on modern astronomy, specially designed for education majors. During the semester, students will develop course materials for classroom instruction appropriate for K-12 education. Correcting common misconceptions in astronomy and current teaching strategies will be discussed to help students master the course material and become effective teachers.

AST 3001. Undergraduate Astronomy Seminar. (1-0) 1 Credit Hour.
Prerequisite: Completion of or concurrent enrollment in AST 3003 or consent of instructor. Designed for physics and astronomy majors. Discussions about current astronomical research, with different topics emphasized each semester. May be repeated twice for credit when the topics vary. Offered on a credit/no-credit basis only.

AST 3013. Fundamentals of Astronomy. (3-0) 3 Credit Hours.
Prerequisites: PHY 1963 (or PHY 1923 in previous catalogs) and MAT 1224 (or MAT 1193 and STA 1403) completed with a grade of “C-” or better. This is a one-semester introductory survey course on modern astronomy for science and engineering majors. Students need to be comfortable with solving problems and using math as a tool to help master the course material. Students concerned about their problem-solving and math skills should consider taking AST 1013 instead, which is intended for non-science majors. Among the topics covered are the celestial sphere, basic orbit theory, stellar parameters, binary stars and light curves, and basic introduction to stellar spectral classification. (Formerly AST 2063. Credit cannot be earned for both AST 3093 and AST 2063.)

AST 3023. Introduction to Astrophysics. (3-0) 3 Credit Hours.
Prerequisites: AST 3013 and PHY 2103 or consent of instructor. Topics include an introduction to stellar structure and evolution, stellar atmospheres, collapsed stars, galactic structure, introduction to cosmology, etc. (Formerly AST 3003 and PHY 4003. Credit cannot be earned for more than one of the following: AST 3003, AST 3023 or PHY 4003.)
AST 3033. Observational Techniques in Astronomy. (3-0) 3 Credit Hours.
Prerequisite: Completion of or concurrent enrollment in AST 3023 or consent of instructor. Properties of stars and starlight; principles of radiation; interpretation of stellar spectra. Observational techniques such as photometry, spectroscopy, telescopes and detectors; variable stars; binary stars. In addition to classical visual observations, topics span the electromagnetic spectrum, including radio, infrared, X-ray, and gamma-ray measurements in astronomy.

AST 3043. Astrochemistry. (3-0) 3 Credit Hours.
Prerequisite: AST 3023 or consent of instructor. An interdisciplinary course that explores astrochemistry: the study of molecules in space. Where are they? How did they get there? What roles do they play in controlling or influencing astrophysical processes? The chemistry of interstellar molecules is one of modern astronomy's best tools for probing the processes of star and planet formation. Organic molecules formed in space and delivered to Earth's primordial surface may have contributed to the origin of terrestrial life. Through a combination of observational spectroscopy and imaging, theoretical modeling and controlled laboratory studies, the secrets of the cosmic chemical cauldron are beginning to be unlocked. This course involves readings in astronomy, chemistry, and biology.

AST 3103. Observational Astronomy Laboratory. (0-6) 3 Credit Hours.
Prerequisite: Completion of, with a grade of “C-” or better, or concurrent enrollment in AST 3033 or consent of instructor. An introduction to practical observational techniques in astronomy designed for physical science students. Topics include basic observational techniques and modern instrumentation in astronomy including astrophotography, photometry, and spectroscopy of solar system, stellar and deep-space objects. Under the supervision of the course instructor, the students will use the 0.4-m telescope and other instrumentation on the campus observatory.

AST 3303. Introduction to Galactic and Extragalactic Astronomy. (3-0) 3 Credit Hours.
Prerequisite: AST 3023 or consent of instructor. Topics include the Milky Way Galaxy and its constituents and the Local Group, morphology and properties of galaxies, Dark Matter, galaxy clusters, structure and evolution of galaxies including interactions and mergers, active galactic nuclei, gravitational lensing, and quasars.

AST 4203. Stellar Astrophysics. (3-0) 3 Credit Hours.
Prerequisite: AST 3023 or consent of instructor. Topics include properties and evolution of stars, stellar atmospheres, stellar spectra, nuclear reactions, stellar models, equations of state, radiative transfer, nucleosynthesis in stars, supernovae, and degenerate stars.

AST 4303. Solar System Astrophysics. (3-0) 3 Credit Hours.
Prerequisite: AST 3023 or consent of instructor. Modern studies of the solar system, including properties of the planets and smaller bodies, and the origin of planetary systems. Topics include the solar system, its formation, structure, and evolution; orbital dynamics, surfaces, interiors, atmospheres, magnetospheres, and other properties of the sun, the planets and their satellites; comets and asteroids; origin of planetary systems; extra-solar systems. (Formerly titled “The Solar System.”).

AST 4953. Special Studies in Astronomy. (3-0) 3 Credit Hours.
Prerequisites: AST 3023 and consent of instructor. An organized course offering the opportunity for specialized study not normally or not often available as part of the regular course offerings. Special Studies may be repeated for credit when the topics vary, but not more than 6 semester credit hours, regardless of discipline, will apply to a bachelor's degree.