Department of Chemistry

The Master of Science (M.S.) in Chemistry and the Doctor of Philosophy (Ph.D.) in Chemistry programs offer opportunities for advanced study and research designed to prepare students for roles in industry, government, research institutes, or educational institutions. For the M.S. program, the thesis option is recommended for students who are planning a career in research or who contemplate pursuing a doctorate in their program of study. A nonthesis option is available for students with other goals. The Ph.D. program is broad-based and will prepare students for a variety of options in chemistry and related fields upon graduation.

Chemistry includes graduate programs of study in analytical chemistry, bioorganic chemistry, biophysical chemistry, biochemical, bioinorganic chemistry, environmental chemistry, inorganic chemistry, organic chemistry, and physical chemistry.

Faculty expertise in each of the interest areas offers the opportunity for direct student-faculty interaction for thesis or dissertation development through coursework and research. Additional cooperative projects and programs are available with other area research institutions.

A limited number of teaching and/or research assistantships and fellowships are available to qualified students. Financial assistance is awarded on a competitive basis.

- M.S. in Chemistry (p. 1)
- Ph.D. in Chemistry (p. 2)

Master of Science Degree in Chemistry

The purpose of the Master of Science (M.S.) degree program in Chemistry is to offer students the opportunity to acquire a sound preparation of the fundamentals in several areas of chemistry, to introduce students to recent advances in chemical theory and methods, and to encourage research in a specific area of study.

Qualified students are encouraged to apply for teaching and/or research assistantships and fellowships. Requests should be sent to the Graduate Advisor of Record for chemistry when application is made for admission to UTSA.

The complete set of requirements for the M.S. degree in Chemistry is described in the Chemistry M.S. Program Handbook which can be accessed at http://utsa.edu/chem/graduates.html.

Admission Requirements

In addition to satisfying the University-wide graduate admission requirements, applicants must have earned a Bachelor of Arts or a Bachelor of Science degree from an accredited university with a minimum grade point average of 3.0 (on a 4.0 scale) in upper-division work, preferably in chemistry. All undergraduate chemistry courses must be completed with a minimum grade point average of 3.0.

Applicants must submit scores from the Graduate Record Examination (GRE). When GRE scores are used to determine admission, applicants will be compared to applicants with similar socioeconomic backgrounds. A minimum of two letters of recommendation from persons familiar with the applicant's undergraduate scholastic record must be sent to the Graduate School at the same time application is made for admission to UTSA. Background or remedial courses in chemistry may be required to remove deficiencies.

Applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL). The English Language Assessment Procedure is a mandatory assessment for incoming international students whose TOEFL scores are between 550 and 600 (paper version) or 79 and 100 (Internet version). See Chapter 1, Admission, of this catalog for details.

Thesis Option in Chemistry

Degree Requirements

The Master of Science in Chemistry program requires the successful completion of a minimum of 33 semester credit hours. The student must have a grade point average of 3.0 or greater (on a 4.0 scale) in the core lecture courses and elective courses combined.

Candidates must complete the following:

A. Required courses (27 semester credit hours):

- CHE 5643 Advanced Organic Chemistry
- CHE 5843 Advanced Physical Chemistry
- CHE 5981 Graduate Seminar in Chemistry

Graduate Seminar in Chemistry (3 semester credit hours):

- CHE 5981 Graduate Seminar in Chemistry (repeated for a total of 3 hours)

Master's Thesis (6 semester credit hours):

- CHE 6983 Master's Thesis (including an oral defense of the written thesis, repeated for a total of 6 hours)

Directed Research (3 semester credit hours):

- CHE 6991 Directed Research
- CHE 6992 Directed Research
- CHE 6993 Directed Research

Registration for CHE 5922 Research and Teaching Practice and Ethics is required for all students who are Teaching Assistants.

B. A minimum of 6 semester credit hours of electives in chemistry, as approved by the M.S. Research Advisor and the Graduate Advisor of Record, is required.

C. Students must pass a final oral comprehensive examination, scheduled during the student's last semester of work, for completion of the degree program.

D. Students must successfully defend their thesis research results before their Graduate Committee prior to the submission of the thesis to the Dean of the Graduate School for approval.

Total Credit Hours

Nonthesis Option in Chemistry

Degree Requirements

This program requires the successful completion of a minimum of 33 semester credit hours. The student must have a grade point average of...
Department of Chemistry

3.0 or greater (on a 4.0 scale) in the core lecture courses and elective courses combined.

Candidates for the degree must complete the following:

A. Required courses (27 semester credit hours):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 5263</td>
<td>Advanced Analytical Chemistry</td>
</tr>
<tr>
<td>CHE 5313</td>
<td>Advanced Biochemistry</td>
</tr>
<tr>
<td>CHE 5453</td>
<td>Advanced Inorganic Chemistry</td>
</tr>
<tr>
<td>CHE 5643</td>
<td>Advanced Organic Chemistry</td>
</tr>
<tr>
<td>CHE 5843</td>
<td>Advanced Physical Chemistry</td>
</tr>
<tr>
<td>CHE 5981</td>
<td>Graduate Seminar in Chemistry</td>
</tr>
</tbody>
</table>

Directed Research (repeated for a total of 9 semester credit hours):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 6991</td>
<td>Directed Research</td>
</tr>
<tr>
<td>CHE 6992</td>
<td>Directed Research</td>
</tr>
<tr>
<td>CHE 6993</td>
<td>Directed Research</td>
</tr>
<tr>
<td>CHE 6994</td>
<td>Directed Research</td>
</tr>
<tr>
<td>CHE 6995</td>
<td>Directed Research</td>
</tr>
<tr>
<td>CHE 6996</td>
<td>Directed Research</td>
</tr>
</tbody>
</table>

Registration for CHE 5922 Research and Teaching Practice and Ethics is required for all students who are Teaching Assistants.

B. 6 semester credit hours of elective organized coursework. These courses must be approved by the M.S. Research Advisor and the Graduate Advisor of Record.

C. Students must submit an acceptable final written report and pass an oral presentation, scheduled during the student’s last semester of work, for completion of the degree program.

Total Credit Hours: 33

1 Registration for CHE 5981 Graduate Seminar in Chemistry is required for each semester of residence, although no more than 3 semester credit hours may be applied to the Master’s degree. The laboratory work in chemistry should be taken as Directed Research.

Doctor of Philosophy Degree in Chemistry

The Department of Chemistry offers opportunities for advanced study and research leading to the Doctor of Philosophy (Ph.D.) degree in Chemistry. The Ph.D. degree in Chemistry is awarded to candidates who have displayed an in-depth understanding of the subject matter and demonstrated the ability to make an original contribution to knowledge in their field of specialty.

The complete set of requirements for the Ph.D. in Chemistry is described in the Chemistry Ph.D. Program Handbook (http://utsa.edu/chem/graduates.html). The regulations for this degree comply with the general University regulations (refer to Chapter 2, General Academic Regulations, and Chapter 5, Doctoral Degree Regulations, in this catalog).

Admission Requirements

In addition to satisfying the University-wide graduate admission requirements, applicants must have earned a Bachelor of Arts or a Bachelor of Science degree from an accredited university and a minimum grade point average of 3.0 (on a 4.0 scale) in upper-division and graduate work, preferably in chemistry. Applicants must submit scores from the Graduate Record Examination (GRE) with their application. When GRE scores are used to determine admission, applicants will be compared to applicants with similar socioeconomic backgrounds. At least two letters of recommendation from persons familiar with the applicant’s undergraduate (and graduate, where applicable) scholastic record must be sent to the Graduate School at the same time application is made for admission to UTSA. Background or remedial courses in chemistry may be required to remove deficiencies.

Applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL). The English Language Assessment Procedure is a mandatory assessment for incoming international students whose TOEFL scores are between 550 and 600 (paper version) or 79 and 100 (Internet version). See Chapter 1, Admission, of this catalog for details.

Degree Requirements

The Ph.D. degree requires a minimum of 86 semester credit hours beyond the baccalaureate degree. The curriculum consists of 18 semester credit hours of formal coursework, required teaching, research, and completion of the dissertation following advancement to candidacy. Enrollment in the Chemistry Research Colloquium and/or Graduate Seminar in Chemistry is required each semester of enrollment and may be taken for a maximum combined total of 12 semester credit hours. A minimum of 56 semester credit hours in doctoral research, including 12 semester credit hours of doctoral dissertation, must be completed. The student must have a grade point average of 3.0 or greater (on a 4.0 scale) in the core courses and elective courses combined. Each student must be a teaching assistant for a minimum of one academic year. Other requirements include (but are not limited to) submission of a satisfactory research proposal in an area outside the dissertation research, the written dissertation, and the final oral examination. The final oral examination consists of a public presentation of the dissertation and a closed oral defense which are evaluated by the student's Doctoral Studies Committee. Students matriculating with a Master's degree may use up to 30 semester credit hours toward the degree, provided the courses are comparable to core and elective courses.

Program of Study

A. Core curriculum. (9 semester credit hours selected from the following):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 5263</td>
<td>Advanced Analytical Chemistry</td>
</tr>
<tr>
<td>CHE 5313</td>
<td>Advanced Biochemistry</td>
</tr>
<tr>
<td>CHE 5453</td>
<td>Advanced Inorganic Chemistry</td>
</tr>
<tr>
<td>CHE 5643</td>
<td>Advanced Organic Chemistry</td>
</tr>
<tr>
<td>CHE 5843</td>
<td>Advanced Physical Chemistry</td>
</tr>
</tbody>
</table>

B. Colloquia and seminars (maximum 12 semester credit hours required):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 5981</td>
<td>Graduate Seminar in Chemistry</td>
</tr>
<tr>
<td>CHE 7911</td>
<td>Chemistry Research Colloquium</td>
</tr>
</tbody>
</table>

C. Doctoral research (minimum 56 semester credit hours required):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 5922</td>
<td>Research and Teaching Practice and Ethics</td>
</tr>
</tbody>
</table>

Directed Research (Select a minimum of 19 semester credit hours of the following):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 6991</td>
<td>Directed Research</td>
</tr>
<tr>
<td>CHE 6992</td>
<td>Directed Research</td>
</tr>
<tr>
<td>CHE 6993</td>
<td>Directed Research</td>
</tr>
<tr>
<td>CHE 6994</td>
<td>Directed Research</td>
</tr>
<tr>
<td>CHE 6995</td>
<td>Directed Research</td>
</tr>
</tbody>
</table>
The entire program of study must be approved by the student’s Doctoral Research Advisor, Doctoral Studies Committee, and Graduate Program Committee and must be submitted to the Dean of the Graduate School for final approval.

Advancement to Candidacy

All students seeking a doctoral degree at UTSA must be admitted to candidacy. One of the requirements for admission to candidacy is passing the Qualifying Examination. The Qualifying Examination is divided into written and oral portions. A Dissertation Research Proposal (DRP) constitutes the written portion, and defense of the DRP constitutes the oral portion. The oral portion must be presented no later than one month following submission of the written portion. The student’s performance on both the written and oral portions is evaluated by the student’s Doctoral Studies Committee.

Chemistry (CHE) Courses

CHE 5263. Advanced Analytical Chemistry. (3-0) 3 Credit Hours.
Prerequisites: CHE 3214 and CHE 4213, or equivalents. The physical and chemical principles of modern analytical chemistry with emphasis on error analysis, signals and noise, electrochemical techniques, analytical separations, and selected spectroscopic methods based on absorption and emission.

CHE 5313. Advanced Biochemistry. (3-0) 3 Credit Hours.
Prerequisite: Undergraduate biochemistry. Advanced topics in modern biochemistry, including cell signaling, apoptosis, trafficking and processing of proteins, DNA array technology, and various aspects of bioinformatics. Ligand interactions and the thermodynamics and mechanisms underlying how these important macromolecules interact with each other. Spectroscopic determination of nucleic acid and protein structures, and reactions using techniques such as nuclear magnetic resonance spectroscopy, mass spectrometry and x-ray diffraction.

CHE 5453. Advanced Inorganic Chemistry. (3-0) 3 Credit Hours.
Prerequisite: CHE 4463 or equivalent. This course is intended as an introductory course to inorganic materials and solid state chemistry for graduate students and advanced undergraduate students. The objective is to understand solid state materials from structural and chemistry perspectives and to introduce general solid state synthesis methodologies and characterization techniques.

CHE 5483. Inorganic Solid State Materials. (3-0) 3 Credit Hours.
Prerequisite: CHE 5483. Advanced Physical Chemistry. (3-0) 3 Credit Hours. Topics to be covered include symmetry and group theory, electronic structure and bonding in transition metal complexes, applications of group theory to vibrational and electronic spectroscopy, rudimentary topics in molecular magnetism, and inorganic reaction mechanisms.

CHE 5643. Advanced Organic Chemistry. (3-0) 3 Credit Hours.
Prerequisite: CHE 4643 or equivalent. The application of molecular mechanisms underlying how these important macromolecules interact with each other. Spectroscopic determination of nucleic acid and protein structures, and reactions using techniques such as nuclear magnetic resonance spectroscopy, mass spectrometry and x-ray diffraction.

CHE 5833. Computationnal Chemistry. (3-0) 3 Credit Hours.
Prerequisite: CHE 3824 or equivalent. The application of molecular mechanical, molecular orbital, and density functional methods to problems of molecular structure, property, reactivity, and spectroscopy. (Formerly CHE 7843. Credit cannot be earned for both CHE 5833 and CHE 7843).

CHE 5843. Advanced Physical Chemistry. (3-0) 3 Credit Hours.
Prerequisite: CHE 3824 or equivalent. An advanced study of valence and spectra as grounded in valence bond theory, molecular orbital theory and the extended Hückel method. Topics include group theory as applied to molecular structure and spectra, electronic, vibrational and rotational spectroscopies, and chemical reactivity including Woodward-Hoffmann theory.
CHE 5922. Research and Teaching Practice and Ethics. (0-0) 2 Credit Hours.
Prerequisites: Graduate standing in Chemistry and concurrent designation as a teaching assistant in the Chemistry program or consent of instructor. The course is designed to improve the instructional effectiveness of graduate students teaching at the college level. The course will cover, but is not limited to, board-work, clear speech, teacher-student interaction, professional responsibilities, course content and pace, grading policy, quiz writing, sensitivity training to student needs, information on technical support, and guest lecturers on special topics. Research ethics will be discussed based on case studies. The grade report for the course is either “CR” (satisfactory performance) or “NC” (unsatisfactory performance). (Formerly CHE 5923. Credit cannot be earned for both CHE 5922 and CHE 5923).

CHE 5981. Graduate Seminar in Chemistry. (0-3) 1 Credit Hour.
Prerequisite: Graduate standing in Chemistry or consent of the Graduate Advisor of Record. Current research and literature seminars presented by faculty, visiting lecturers, and doctoral candidates. Students in the Doctoral chemistry program must register every semester while in residence, but only 8 hours will apply toward the Doctoral degree. The grade report for the course is either “CR” (satisfactory performance) or “NC” (unsatisfactory performance).

CHE 6263. Recent Advances in Bioanalytical Chemistry. (3-0) 3 Credit Hours.
Prerequisites: Consent of instructor and Graduate Advisor of Record. A survey of modern analytical techniques used in studies of biological interest from both theoretical and practical perspectives. (Formerly CHE 7263. Credit cannot be earned for both CHE 6263 and CHE 7263).

CHE 6403. Bioinorganic Chemistry. (3-0) 3 Credit Hours.
Prerequisite: CHE 4303 or CHE 4463, or equivalent. Study of the functions, reaction sites, mechanisms, molecular architecture, and medicinal aspects of metal ions in biological systems including bio-organometallic compounds. A discussion of the experimental techniques will be included. (Formerly CHE 7403. Credit cannot be earned for both CHE 6403 and CHE 7403).

CHE 6433. Organometallic Chemistry. (3-0) 3 Credit Hours.
Prerequisite: CHE 4463 or equivalent. This course is intended to provide students with an introduction to the field of organometallic chemistry covering concepts in bonding, synthesis, and catalysis. Students will become familiar with common ligands and preparative methods in organometallic chemistry, theories of bonding and electronic structure, basic reaction mechanisms, and applications to catalysis in organic chemistry. (Formerly CHE 7433. Credit cannot be earned for both CHE 6433 and CHE 7433).

CHE 6443. Green Chemistry and Catalysis. (3-0) 3 Credit Hours.
Prerequisite: CHE 3464 or consent of instructor. Introduction to the 12 principles of green chemistry as well as the tools of green chemistry including the use of alternative feed stocks or starting materials, reagents, solvents, target molecules, and catalysts; demonstrates how to evaluate a reaction or process and determine “greener” alternatives; focuses on the application of innovative technology the development of “greener” routes to improve industrial processes and to produce important products.

CHE 6623. Advanced Organic Synthesis. (3-0) 3 Credit Hours.
Prerequisite: CHE 3643 or consent of instructor. A study of modern methods of organic functional group transformation, simple carbon skeleton construction, asymmetric synthesis, introduction to the synthon concept and to retrosynthetic analytical methodology for designing rational synthetic approaches to complex organic molecules of biological interest. (Formerly CHE 7623. Credit cannot be earned for both CHE 6623 and CHE 7623).

CHE 6633. Bioorganic Chemistry. (3-0) 3 Credit Hours.
Prerequisite: CHE 5643 or consent of instructor. Chemical transformations of biologically important organic compounds; examination of enzyme active sites. Discussion of theories of catalysis, stereochemistry, electron-transfer, and molecular structure in the context of biological systems. (Formerly CHE 7603. Credit cannot be earned for both CHE 6633 and CHE 7603).

CHE 6643. Chemistry of Heterocyclic Compounds. (3-0) 3 Credit Hours.
The course gives a broad introduction to cyclic organic compounds that include heteroatoms, especially nitrogen, oxygen and sulfur, in their ring structures. Emphasis is given to aromatic heterocyclic systems, such as pyridines, quinolines, isoquinolines, pyrroles, furanes, thiophenes, indoles, pyrimidines, purines, and imidazoles. For each group, ring synthesis, chemical properties and characteristic reactions will be discussed, as will be the biological effects of representative structures. Aromaticity applied to heterocyclic compounds, general methods for ring synthesis, and different systems for nomenclature will be presented. This course requires a firm understanding of the principles of organic chemistry.

CHE 6683. Topics in the Chemistry of Natural Products. (3-0) 3 Credit Hours.
Prerequisites: CHE 5643 and CHE 6623. Selected topics in the chemistry and biochemistry of natural products and related compounds of biological and medicinal interest. Course may be repeated for credit when topics vary, but not more than 6 hours may apply to the Doctoral degree. (Formerly CHE 7683. Credit cannot be earned for both CHE 6683 and CHE 7683 on the same topic).

CHE 6693. Pharmaceutical Chemistry. (3-0) 3 Credit Hours.
Prerequisite: CHE 3643 or equivalent or consent of instructor. This course aims to provide students with an understanding of the overall process of drug discovery and development with particular emphasis on the role of organic chemistry in these endeavors. It will cover the basic principles of how new drugs are discovered, how drugs interact with their biological targets, application of medicinal chemistry in lead optimization, and the role of process chemistry in large-scale drug synthesis and development. The second half of the course will provide actual case studies of both successful and unsuccessful drug candidates where students will learn about the entire drug discovery and development process from firsthand experience.

CHE 6813. Molecular Thermodynamics. (3-0) 3 Credit Hours.
Prerequisite: CHE 5843. A molecular approach to the study of the physicochemical properties of gases, liquids, and solids. (Formerly CHE 7813. Credit cannot be earned for both CHE 6813 and CHE 7813).

CHE 6823. Chemical Kinetics and Dynamics. (3-0) 3 Credit Hours.
Prerequisite: CHE 5843. An advanced study of topics in chemical kinetics and dynamics. (Formerly CHE 7823. Credit cannot be earned for both CHE 6823 and CHE 7823).
CHE 6833. Quantum Chemistry. (3-0) 3 Credit Hours.
Prerequisite: CHE 5843. The application of quantum mechanical methods
and spectroscopic methods to chemical systems. (Formerly CHE 7833. Credit cannot be earned for both
CHE 6833 and CHE 7833).

CHE 6843. Statistical Mechanics. (3-0) 3 Credit Hours.
Prerequisite: CHE 5843. The application of statistical mechanical
methods to chemical systems.

CHE 6853. Biophysical Chemistry. (3-0) 3 Credit Hours.
Prerequisite: CHE 5843. The study of the structure/function relations
of proteins, nucleic acids, membranes, and other macromolecular
biomolecules using spectroscopic methods. (Formerly CHE 7853. Credit
cannot be earned for both CHE 6853 and CHE 7853).

CHE 6883. Mass Spectrometry. (3-0) 3 Credit Hours.
Prerequisite: Consent of instructor. The basic principles of interpreting
mass spectra and how they are produced. The effect the method of
ion production has on the observed mass spectra, and the theory and
operation of various types of mass spectrometers will be covered. The
basic theory of ion-molecule reactions and other advanced topics will be
presented.

CHE 6961. Comprehensive Examination. (0-0) 1 Credit Hour.
Prerequisite: Approval of the appropriate Graduate Program Committee.
Independent study course for the purpose of taking the Comprehensive
Examination. May be repeated as many times as approved by the
Graduate Program Committee. Enrollment is required each term in
which the Comprehensive Examination is taken if no other courses
are being taken that term. The grade report for the course is either
“CR” (satisfactory performance on the Comprehensive Examination) or
“NC” (unsatisfactory performance on the Comprehensive Examination).

CHE 6973. Special Problems. (3-0) 3 Credit Hours.
Prerequisite: Consent of instructor. An organized course offering the
opportunity for specialized study not normally or not often available as
part of the regular course offerings. Special Problems courses may be
repeated for credit when the topics vary, but not more than 6 hours,
regardless of discipline, will apply to the Master’s degree.

CHE 6983. Master’s Thesis. (0-0) 3 Credit Hours.
Prerequisites: Permission of the Graduate Advisor of Record and thesis
director. Thesis research and preparation. May be repeated for credit,
but not more than 6 hours will apply to the Master’s degree. Credit will be
awarded upon completion of the thesis. Enrollment is required each term in
which the thesis is in progress.

CHE 6991. Directed Research. (0-0) 1 Credit Hour.
Prerequisites: Graduate standing and permission in writing (form
available) of the instructor and the student’s Graduate Advisor of
Record. The directed research course may involve either a laboratory
or a theoretical problem. Normally a written report is required. May be
repeated for credit, but not more than 9 hours or 19 hours, regardless
of discipline, will apply to the Master’s degree or Doctoral degree,
respectively.

CHE 6992. Directed Research. (0-0) 2 Credit Hours.
Prerequisites: Graduate standing and permission in writing (form
available) of the instructor and the student’s Graduate Advisor of
Record. The directed research course may involve either a laboratory
or a theoretical problem. Normally a written report is required. May be
repeated for credit, but not more than 9 hours or 19 hours, regardless
of discipline, will apply to the Master’s degree or Doctoral degree,
respectively.

CHE 6993. Directed Research. (0-0) 3 Credit Hours.
Prerequisites: Graduate standing and permission in writing (form
available) of the instructor and the student’s Graduate Advisor of
Record. The directed research course may involve either a laboratory
or a theoretical problem. Normally a written report is required. May be
repeated for credit, but not more than 9 hours or 19 hours, regardless
of discipline, will apply to the Master’s degree or Doctoral degree,
respectively.

CHE 6994. Directed Research. (0-0) 4 Credit Hours.
Prerequisites: Graduate standing and permission in writing (form
available) of the instructor and the student’s Graduate Advisor of
Record. The directed research course may involve either a laboratory
or a theoretical problem. Normally a written report is required. May be
repeated for credit, but not more than 9 hours or 19 hours, regardless
of discipline, will apply to the Master’s degree or Doctoral degree,
respectively.

CHE 6995. Directed Research. (0-0) 5 Credit Hours.
Prerequisites: Graduate standing and permission in writing (form
available) of the instructor and the student’s Graduate Advisor of
Record. The directed research course may involve either a laboratory
or a theoretical problem. Normally a written report is required. May be
repeated for credit, but not more than 9 hours or 19 hours, regardless
of discipline, will apply to the Master’s degree or Doctoral degree,
respectively.

CHE 6996. Directed Research. (0-0) 6 Credit Hours.
Prerequisites: Graduate standing and permission in writing (form
available) of the instructor and the student’s Graduate Advisor of
Record. The directed research course may involve either a laboratory
or a theoretical problem. Normally a written report is required. May be
repeated for credit, but not more than 9 hours or 19 hours, regardless
of discipline, will apply to the Master’s degree or Doctoral degree,
respectively.

CHE 6997. Directed Research. (0-0) 7 Credit Hours.
Prerequisites: Graduate standing and permission in writing (form
available) of the instructor and the student’s Graduate Advisor of
Record. The directed research course may involve either a laboratory
or a theoretical problem. Normally a written report is required. May be
repeated for credit, but not more than 9 hours or 19 hours, regardless
of discipline, will apply to the Master’s degree or Doctoral degree,
respectively.

CHE 7633. Advanced Catalysis in Organic Synthesis. (3-0) 3 Credit
Hours.
Prerequisite CHE 5642 or equivalent. This course will cover advanced
topics in modern catalytic transformations useful in the synthesis of
complex molecular structures. Topics will include an introduction to
catalysis, organometallics overview, kinetics of catalysis, non-linear
effects, kinetic resolutions, asymmetric hydrogenations, C-H activation,
olefin metathesis, Pd-catalyzed allylic substitutions, transition metal
mediated cross-couplings, biocatalysis and organocatalysis.

CHE 7911. Chemistry Research Colloquium. (0-0) 1 Credit Hour.
Prerequisite: Graduate standing in Chemistry. Discussions of current
journal articles, reviews, and recent advances in specialized areas of
chemistry (including current research progress of students).
May be repeated for credit as topics vary. The grade report for this
course is either “CR” (satisfactory participation in the colloquium) or
“NC” (unsatisfactory participation in the colloquium).
CHE 7921. Doctoral Research. (0-0) 1 Credit Hour.
Prerequisite: Graduate standing in Chemistry. Doctoral research and preparation. May be repeated for credit, but not more than 26 hours will apply to the Doctoral degree. Enrollment in either CHE 7921-8 or CHE 7931-8, depending on progress, is required each term in which the dissertation is in progress.

CHE 7922. Doctoral Research. (0-0) 2 Credit Hours.
Prerequisite: Graduate standing in Chemistry. Doctoral research and preparation. May be repeated for credit, but not more than 26 hours will apply to the Doctoral degree. Enrollment in either CHE 7921-8 or CHE 7931-8, depending on progress, is required each term in which the dissertation is in progress.

CHE 7923. Doctoral Research. (0-0) 3 Credit Hours.
Prerequisite: Graduate standing in Chemistry. Doctoral research and preparation. May be repeated for credit, but not more than 26 hours will apply to the Doctoral degree. Enrollment in either CHE 7921-8 or CHE 7931-8, depending on progress, is required each term in which the dissertation is in progress.

CHE 7926. Doctoral Research. (0-0) 6 Credit Hours.
Prerequisite: Graduate standing in Chemistry. Doctoral research and preparation. May be repeated for credit, but not more than 26 hours will apply to the Doctoral degree. Enrollment in either CHE 7921-8 or CHE 7931-8, depending on progress, is required each term in which the dissertation is in progress.

CHE 7927. Doctoral Research. (0-0) 7 Credit Hours.
Prerequisite: Graduate standing in Chemistry. Doctoral research and preparation. May be repeated for credit, but not more than 26 hours will apply to the Doctoral degree. Enrollment in either CHE 7921-8 or CHE 7931-8, depending on progress, is required each term in which the dissertation is in progress.

CHE 7928. Doctoral Research. (0-0) 8 Credit Hours.
Prerequisite: Graduate standing in Chemistry. Doctoral research and preparation. May be repeated for credit, but not more than 26 hours will apply to the Doctoral degree. Enrollment in either CHE 7921-8 or CHE 7931-8, depending on progress, is required each term in which the dissertation is in progress.

CHE 7931. Doctoral Dissertation. (0-0) 1 Credit Hour.
Prerequisites: Permission of the Graduate Advisor of Record and dissertation director. Preparation and writing of the Doctoral dissertation. May be repeated for credit, but not more than 12 hours will apply to the Doctoral degree. Enrollment in either CHE 7921-8 or CHE 7931-8, depending on progress, is required each term in which the dissertation is in progress.

CHE 7932. Doctoral Dissertation. (0-0) 2 Credit Hours.
Prerequisites: Permission of the Graduate Advisor of Record and dissertation director. Preparation and writing of the Doctoral dissertation. May be repeated for credit, but not more than 12 hours will apply to the Doctoral degree. Enrollment in either CHE 7921-8 or CHE 7931-8, depending on progress, is required each term in which the dissertation is in progress.

CHE 7933. Doctoral Dissertation. (0-0) 3 Credit Hours.
Prerequisites: Permission of the Graduate Advisor of Record and dissertation director. Preparation and writing of the Doctoral dissertation. May be repeated for credit, but not more than 12 hours will apply to the Doctoral degree. Enrollment in either CHE 7921-8 or CHE 7931-8, depending on progress, is required each term in which the dissertation is in progress.

CHE 7936. Doctoral Dissertation. (0-0) 6 Credit Hours.
Prerequisites: Permission of the Graduate Advisor of Record and dissertation director. Preparation and writing of the Doctoral dissertation. May be repeated for credit, but not more than 12 hours will apply to the Doctoral degree. Enrollment in either CHE 7921-8 or CHE 7931-8, depending on progress, is required each term in which the dissertation is in progress.

CHE 7937. Doctoral Dissertation. (0-0) 7 Credit Hours.
Prerequisites: Permission of the Graduate Advisor of Record and dissertation director. Preparation and writing of the Doctoral dissertation. May be repeated for credit, but not more than 12 hours will apply to the Doctoral degree. Enrollment in either CHE 7921-8 or CHE 7931-8, depending on progress, is required each term in which the dissertation is in progress.

CHE 7938. Doctoral Dissertation. (0-0) 8 Credit Hours.
Prerequisites: Permission of the Graduate Advisor of Record and dissertation director. Preparation and writing of the Doctoral dissertation. May be repeated for credit, but not more than 12 hours will apply to the Doctoral degree. Enrollment in either CHE 7921-8 or CHE 7931-8, depending on progress, is required each term in which the dissertation is in progress.

CHE 7973. Special Problems. (3-0) 3 Credit Hours.
Prerequisite: Consent of instructor. An organized course offering the opportunity for specialized study not normally or not often available as part of the regular course offerings. Special Problems courses may be repeated for credit when the topics vary, but not more than 6 hours, regardless of discipline, will apply to the Doctoral degree.