Department of Electrical and Computer Engineering

The Department of Electrical and Computer Engineering offers Master of Science degrees in Advanced Materials Engineering, Computer Engineering, and Electrical Engineering, as well as a Doctor of Philosophy degree in Electrical Engineering.

- M.S. in Electrical Engineering (p. 1)
- M.S. in Computer Engineering (p. 2)
- M.S. in Advanced Materials Engineering (p. 4)
- Ph.D. in Electrical Engineering (p. 6)
- Integrated Bachelor's/Master's Program (p. 8)

Master of Science Degree in Electrical Engineering

The Master of Science degree in Electrical Engineering is designed to offer students the opportunity to prepare for leadership roles in careers with industry, government, or educational institutions. The program has emphases in five concentrations: Computer Engineering, Systems and Control, Digital Signal Processing, Communications, and Electronic Materials and Devices. A thesis option is offered for students who want the opportunity to obtain expertise in research and who may be interested in pursuing a doctoral degree in electrical engineering. A nonthesis option is available for students who want a practical industrial applications-oriented degree.

Program Admission Requirements

In addition to the University-wide graduate admission requirements, admission decisions will be based on a combination of the following:

- a satisfactory score, as evaluated by the Electrical Engineering Graduate Studies Committee, on the Graduate Record Examination (GRE)
- a bachelor's degree in electrical engineering, or in related fields for exceptional candidates
- a minimum grade point average of 3.0 in the last 60 semester credit hours.

Students whose native language is not English must achieve a minimum score of 550 on the Test of English as a Foreign Language (TOEFL) paper version, 79 on the TOEFL iBT, or 6.5 on the International English Language Testing System (IELTS).

A student who does not qualify for unconditional admission may be admitted on a conditional basis as determined by the Electrical Engineering Graduate Studies Committee. Applicants with an electrical engineering background who wish to continue their education but do not intend to pursue the Master of Science degree in Electrical Engineering are encouraged to seek admission as special graduate students.

Degree Requirements

The minimum number of semester credit hours required for the degree is 30 for the thesis option and 33 for the nonthesis option.

Thesis Option

The degree requires 30 semester credit hours including 24 technical course credits and 6 thesis credits identified as EE 6983 Master’s Thesis. At least 6 semester credit hours, including 3 semester credit hours of a core course, must be taken from courses in the student's concentration area. At least 3 semester credit hours of core courses must be taken outside the concentration area to satisfy the breadth requirement. No more than 3 semester credit hours of independent study should be included. One (1) semester credit hour of EE 6991 Research Seminar is required and up to two (2) semester credit hours of EE 6991 may be included. Up to 6 semester credit hours may be taken from other graduate courses including courses from outside electrical engineering with approval of the Electrical Engineering Graduate Program Committee. A current list of electrical engineering graduate courses by area of concentration is available in the department office. The distribution of required courses is shown below.

A. Core course based on student’s area of concentration from the list below: 3

Computer Engineering Concentration	EE 5123 Computer Architecture
Systems and Control Concentration	EE 5143 Linear Systems and Control
Digital Signal Processing Concentration	EE 5163 Digital Signal Processing
Communications Concentration	EE 5183 Foundations of Communication Theory
Electronic Materials and Devices Concentration	EE 5693 Dielectric and Optoelectronic Devices

B. At least one course from student’s selected concentration 3

C. At least one core course from outside the concentration 3

D. Additional graduate electrical engineering courses 9

Must include 1 semester credit hour of EE 6991 Research Seminar

E. Other Electives (may be courses from outside electrical engineering) 6

F. Master’s Thesis (a minimum of 6 semester credit hours are required) 6

EE 6983 Master’s Thesis

Total Credit Hours 30

1 Chosen with approval of the Electrical Engineering Graduate Program Committee.

Nonthesis Option

The degree requires 33 semester credit hours of technical course credits. At least 9 semester credit hours, including 3 semester credit hours of a core course, must be taken from one area to establish the student's concentration. At least 6 semester credit hours of core courses must be taken outside the concentration area to satisfy the breadth requirement. No more than 3 semester credit hours of independent study should be included. One (1) semester credit hour of EE 6991 Research Seminar is required and up to two (2) semester credit hours of EE 6991 may be included. Up to 6 semester credit hours may be taken from other graduate courses including courses from outside electrical engineering with approval of the Electrical Engineering Graduate Program Committee. A current list of electrical engineering graduate courses by area of
concentration is available in the department office. The distribution of required courses is given below.

A. Core course based on student's area of concentration from the list below:

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Engineering Concentration</td>
<td>EE 5123</td>
<td>Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td>Systems and Control Concentration</td>
<td>EE 5143</td>
<td>Linear Systems and Control</td>
<td>3</td>
</tr>
<tr>
<td>Digital Signal Processing Concentration</td>
<td>EE 5163</td>
<td>Digital Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>Communications Concentration</td>
<td>EE 5183</td>
<td>Foundations of Communication Theory</td>
<td>3</td>
</tr>
<tr>
<td>Electronic Materials and Devices Concentration</td>
<td>EE 5693</td>
<td>Dielectric and Optoelectronic Devices</td>
<td>3</td>
</tr>
</tbody>
</table>

B. At least two courses from student's selected concentration 6

C. At least two core courses from outside the concentration 6

D. Additional graduate electrical engineering courses 9

Must include 1 semester credit hour of EE 6991 Research Seminar

E. Other Electives (may be courses from outside electrical engineering) 1

F. Master's Project (a minimum of 3 semester credit hours are required)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 6943</td>
<td>Graduate Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours 33

1 Chosen with approval of the Electrical Engineering Graduate Program Committee.

Concentrations

The Electrical Engineering (EE) courses are divided into five concentrations as follows:

Computer Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 5103</td>
<td>Engineering Programming</td>
<td>3</td>
</tr>
<tr>
<td>EE 5113</td>
<td>VLSI System Design</td>
<td>3</td>
</tr>
<tr>
<td>EE 5123</td>
<td>Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td>EE 5193</td>
<td>FPGA and HDL</td>
<td>3</td>
</tr>
<tr>
<td>EE 5223</td>
<td>Topics in Digital Design</td>
<td>3</td>
</tr>
<tr>
<td>EE 5323</td>
<td>Topics in VLSI Design</td>
<td>3</td>
</tr>
<tr>
<td>EE 5423</td>
<td>Topics in Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td>EE 5453</td>
<td>Topics in Software Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Systems and Control

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 5143</td>
<td>Linear Systems and Control</td>
<td>3</td>
</tr>
<tr>
<td>EE 5243</td>
<td>Topics in Systems and Control</td>
<td>3</td>
</tr>
<tr>
<td>EE 5343</td>
<td>Intelligent Control and Robotics</td>
<td>3</td>
</tr>
<tr>
<td>EE 5443</td>
<td>Discrete-Time Control Theory and Design</td>
<td>3</td>
</tr>
<tr>
<td>EE 6343</td>
<td>Advanced Topics in Systems and Control</td>
<td>3</td>
</tr>
<tr>
<td>EE 7443</td>
<td>Nonlinear Control Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Digital Signal Processing

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 5153</td>
<td>Random Signals and Noise</td>
<td>3</td>
</tr>
<tr>
<td>EE 5163</td>
<td>Digital Signal Processing</td>
<td>3</td>
</tr>
</tbody>
</table>

EE 5263 | Topics in Digital Signal Processing and Digital Filtering | 3
EE 5353 | Topics in Multimedia Signal Processing | 3
EE 6363 | Advanced Topics in Signal Processing | 3

Communications

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 5153</td>
<td>Random Signals and Noise</td>
<td>3</td>
</tr>
<tr>
<td>EE 5183</td>
<td>Foundations of Communication Theory</td>
<td>3</td>
</tr>
<tr>
<td>EE 5283</td>
<td>Topics in Communication Systems</td>
<td>3</td>
</tr>
<tr>
<td>EE 5373</td>
<td>Wireless Communication</td>
<td>3</td>
</tr>
<tr>
<td>EE 5473</td>
<td>Fiber Optic Communication</td>
<td>3</td>
</tr>
<tr>
<td>EE 5583</td>
<td>Topics in Digital Communication</td>
<td>3</td>
</tr>
<tr>
<td>EE 6383</td>
<td>Advanced Topics in Communications</td>
<td>3</td>
</tr>
</tbody>
</table>

Electronic Materials and Devices

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 5293</td>
<td>Topics in Microelectronics</td>
<td>3</td>
</tr>
</tbody>
</table>
| EE 5403 | Advanced Dielectric and Optoelectronic Engineering Laboratory | 3
| EE 5503 | Introduction to Micro and Nanotechnology | 3
| EE 5593 | Topics in Advanced Sensor Devices | 3 |
| EE 5693 | Dielectric and Optoelectronic Devices | 3 |
| EE 6493 | Advanced Topics in Electronic Materials and Devices | 3

Degree plans must be consistent with the guidelines established by the Electrical Engineering Graduate Program Committee. In general, undergraduate courses, general education courses, and courses satisfying provisional conditions for admission cannot be counted toward the total required degree credit hours.

Comprehensive Examination

Degree candidates are required to pass an oral comprehensive examination. The examination is to be administered in the form of a presentation of the thesis or research project to the student's advisory committee, chaired by a tenured or tenure-track graduate faculty member. Students must register for one semester credit hour of Comprehensive Examination for the semester in which the examination is to be taken, if they are not enrolled in other courses.

Master of Science Degree in Computer Engineering

The Master of Science degree in Computer Engineering is designed to offer students the opportunity to prepare for leadership roles in careers with industry, government, or educational institutions. Students enrolled in the M.S. degree program in Computer Engineering will have two options to obtain their degrees: (1) Thesis Option and (2) Nonthesis Option. A thesis option is offered for students who want the opportunity to obtain expertise in research and who may be interested in pursuing a doctoral degree in computer engineering or electrical engineering. A nonthesis option is offered for students who want a practical industrial applications-oriented degree.

Program Admission Requirements

In addition to the University-wide graduate admission requirements, admission decisions will be based on a combination of the following:
• a satisfactory score, as evaluated by the Computer Engineering Graduate Studies Committee, on the Graduate Record Examination (GRE)
• a bachelor's degree in electrical or computer engineering or in related fields for exceptional candidates
• a minimum grade point average of 3.0 in the last 60 semester credit hours of undergraduate studies.

Students whose native language is not English must achieve a minimum score of 550 on the Test of English as a Foreign Language (TOEFL) paper version, 79 on the TOEFL iBT, or 6.5 on the International English Language Testing System (IELTS).

A student who does not qualify for unconditional admission may be admitted on a conditional basis as determined by the Computer Engineering Graduate Studies Committee. Applicants with an electrical or computer engineering background who wish to continue their education but do not intend to pursue the Master of Science degree in Computer Engineering are encouraged to seek admission as special graduate students.

Degree Requirements
The minimum number of semester credit hours required for the degree is 30 for the thesis option and 33 for the nonthesis option.

The courses are divided into three groups as follows:

Thesis Option

A. Select any two core courses from Group A 6

Group A. The following four core courses of this group form the basis for the program:
- EE 5103 Engineering Programming
- EE 5113 VLSI System Design
- EE 5123 Computer Architecture
- EE 5193 FPGA and HDL

B. Additional computer engineering courses from Group A or B (must include 1 semester credit hour of EE 6991 Research Seminar) 12

Group B. Additional computer engineering courses:
- CS 5103 Software Engineering
- EE 5163 Digital Signal Processing
- EE 5223 Topics in Digital Design (may be repeated when topic varies)
- EE 5293 Topics in Microelectronics (may be repeated when topic varies)
- EE 5323 Topics in VLSI Design (may be repeated when topic varies)
- EE 5353 Topics in Multimedia Signal Processing (only Topic 1 and Topic 2)
- EE 5423 Topics in Computer Architecture (may be repeated when topic varies)
- EE 5453 Topics in Software Engineering (may be repeated when topic varies)
- EE 6991 Research Seminar
- CPE 6953 Independent Study or CPE 6952 Independent Study or CPE 6951 Independent Study

C. Elective courses from Group A or B or C 1 9

Group C. Free elective courses (any graduate-level electrical engineering course):
- CS 5113 Computer Graphics
- CS 5233 Artificial Intelligence
- CS 5253 Expert Systems
- CS 5363 Programming Languages and Compilers
- CS 5523 Operating Systems

D. Master's Thesis (a minimum of 6 semester credit hours) 6

Total Credit Hours 30

1 Chosen with approval of the Computer Engineering Graduate Program Committee.

Nonthesis Option

A. Select any two core courses from Group A 6

Group A. The following four core courses of this group form the basis for the program:
- EE 5103 Engineering Programming
- EE 5113 VLSI System Design
- EE 5123 Computer Architecture
- EE 5193 FPGA and HDL

B. Additional computer engineering courses from Group A or B (must include 1 semester credit hour of EE 6991 Research Seminar) 15

Group B. Additional computer engineering courses:
- CS 5103 Software Engineering
- EE 5163 Digital Signal Processing
- EE 5223 Topics in Digital Design (may be repeated when topic varies)
- EE 5293 Topics in Microelectronics (may be repeated when topic varies)
- EE 5323 Topics in VLSI Design (may be repeated when topic varies)
- EE 5353 Topics in Multimedia Signal Processing (only Topic 1 and Topic 2)
- EE 5423 Topics in Computer Architecture (may be repeated when topic varies)
- EE 5453 Topics in Software Engineering (may be repeated when topic varies)
- EE 6991 Research Seminar
- CPE 6953 Independent Study or CPE 6952 Independent Study or CPE 6951 Independent Study

C. Elective courses from Group A or B or C 1 9

Group C. Free elective courses (any graduate-level electrical engineering course):
- CS 5113 Computer Graphics
- CS 5233 Artificial Intelligence
- CS 5253 Expert Systems
- CS 5363 Programming Languages and Compilers
- CS 5523 Operating Systems

D. Master's Project (a minimum of 3 semester credit hours) 3
One (1) credit hour of EE 6991 Research Seminar is required for both the thesis and nonthesis options and up to two (2) credit hours of EE 6991 can be included. No more than three (3) credit hours of independent study can be included.

Degree plans must be consistent with the guidelines established by the Computer Engineering Graduate Program Committee. In general, undergraduate courses, general education courses, and courses satisfying provisional conditions for admission cannot be counted toward the total required degree credit hours.

Comprehensive Examination

Degree candidates are required to pass an oral comprehensive examination. The examination is to be administered in the form of a presentation of the thesis or research project to the student’s advisory committee, chaired by a tenured or tenure-track graduate faculty member. Students must register for one semester credit hour of Comprehensive Examination for the semester in which the examination is to be taken, if they are not enrolled in other courses.

Master of Science Degree in Advanced Materials Engineering

The Master of Science (M.S.) degree in Advanced Materials Engineering (MatE) at The University of Texas at San Antonio (UTSA) is an interdisciplinary graduate degree program offered by the College of Engineering. The M.S. in MatE degree program is currently administered by the Department of Electrical and Computer Engineering.

The Master of Science degree in Advanced Materials Engineering is designed to train graduate students with the state-of-the-art technical knowledge and skill sets necessary for independent critical thinking, problem solving, and decision making to address multidisciplinary problems in materials engineering. The degree program also provides students with opportunities in taking multidisciplinary courses from the College of Engineering and other colleges at UTSA to enhance students’ leadership, problem-solving, and entrepreneurship skills.

The program addresses three interlinked areas of knowledge in advanced materials engineering:

1. **Structure-function relationships in materials, which determine behavior at the macro-, micro-, nano-, molecular- and atomic-levels;**
2. **Synthesis, characterization, measurement, and computational modeling of materials (ceramics, composites, metals, polymers, multifunctional, electronic and biomedical) especially those with novel properties, to address current and future technological challenges;**

3. **Design and applications of materials that impact different facets of our economy, including materials in energy, nanotechnology, medicine, communications, sensors, transportation, structural and environmental applications.**

The M.S. in MatE offers core courses to all enrolled students to achieve a common platform of understanding and knowledge. Subsequently, students will choose their concentrations according to materials classifications and applications. Currently two concentrations are offered:

- **Concentration I – Multifunctional Electronic, Dielectric, Photonic and Magnetic Materials**
- **Concentration II – Multifunctional Biomedical Materials**

With the approval of the Program Director and the student’s Supervising Professor, a student may take graduate-level courses offered by other graduate programs related to materials science and engineering, including from the Management of Technology program, to augment the student’s education and creativity in interdisciplinary areas and to better prepare for jobs in research and in the industry.

Both thesis and nonthesis options are available.

Program Admission Requirements

In addition to the University-wide graduate admission requirements, admission decisions will be made by the Admissions Committee based on a combination of the following:

- A bachelor’s degree in any discipline of engineering, materials science, physics or chemistry. A minimum grade point average of 3.0 (on a 4.0 scale) in the last 60 semester credit hours of undergraduate studies.
- A statement of research experience, interests and goals.
- Letters of recommendation.
- A satisfactory score on the Graduate Record Examination (GRE) test as evaluated by the Admissions Committee. An applicant’s performance on the GRE is considered with other criteria when making an admission or competitive fellowship decision but will not be used as the sole or primary criterion to end consideration of the applicant.

Students whose native language is not English must achieve a minimum score of 550 on the Test of English as a Foreign Language (TOEFL) paper version, 79 on the TOEFL iBT, or 6.5 on the International English Language Testing System (IELTS).

Degree Requirements

The minimum number of semester credit hours required for the M.S. in MatE degree is 30 for the thesis option and 33 for the nonthesis option.

Thesis Option

The degree requires 30 semester credit hours including 24 technical course credits and 6 thesis credits identified as MATE 6983 Master’s Thesis Research. A total of 18 semester credit hours, including 9 credits of core courses in Group A and at least 6 credits of concentration courses and 3 credits of another concentration course in Group B must be taken to satisfy the depth and the breadth requirement. Up to 6 credits may be taken from courses in Group C, including courses from outside of the College of Engineering with the approval of the Advanced Materials Engineering Graduate Program Committee. A current list of MATE graduate courses is available in the department office. No more than a total of 3 semester credit hours of MATE 6951, MATE 6952, or MATE 6953 Directed Research in Advanced Materials Engineering, MOT 6971 or MOT 6973 Special Problems, and Research Seminar (BME 6011 or EE 6991) may be included.

A. Required Core Courses from Group A

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPE 6943</td>
<td>Graduate Project</td>
</tr>
</tbody>
</table>

Total Credit Hours: 33

1. Chosen with approval of the Computer Engineering Graduate Program Committee.
A. Required Core Courses from Group A

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATE 5113</td>
<td>Functions, Evaluations and Synthesis Technology of Advanced Materials</td>
</tr>
<tr>
<td>MOT 5163</td>
<td>Management of Technology</td>
</tr>
</tbody>
</table>

B. Concentration specific courses from Group B

<table>
<thead>
<tr>
<th>Group B. Concentration specific courses:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration I: Multifunctional Electronic, Dielectric, Photonic and Magnetic Materials</td>
</tr>
<tr>
<td>EE 5403</td>
</tr>
<tr>
<td>EE 5503</td>
</tr>
<tr>
<td>EE 5693</td>
</tr>
<tr>
<td>EE 6493</td>
</tr>
<tr>
<td>MATE 5213</td>
</tr>
<tr>
<td>MATE 5223</td>
</tr>
<tr>
<td>MATE 5233</td>
</tr>
<tr>
<td>MATE 5243</td>
</tr>
<tr>
<td>MATE 5253</td>
</tr>
<tr>
<td>MATE 5393</td>
</tr>
</tbody>
</table>

| **Concentration II: Multifunctional Biomedical Materials** |
BME 6933	Tissue-Biomaterials Interactions
BME 6943	Biomaterials and Cell Signaling
BME 6953	Biomaterials for Drug-Delivery/Pharmacology
BME 6963	Fundamentals to Polymer Science with Select Biomedical Applications
BME 6993	Topics in Biomaterials
MATE 5513	Fundamentals of Microfabrication and Application
MATE 5523	Biosensors: Fundamentals and Applications
MATE 5533	Biomaterials
MATE 5543	Current Analytical Tools for Biomaterials Characterizations
MATE 5393	Topics in Advanced Materials Engineering

C. Prescribed Electives from Group C

<table>
<thead>
<tr>
<th>Group C. Prescribed elective courses. Additional elective courses may be added with approval of the Advanced Materials Engineering Graduate Program Committee.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 6011</td>
</tr>
<tr>
<td>BME 6723</td>
</tr>
<tr>
<td>EE 6991</td>
</tr>
<tr>
<td>MATE 6951</td>
</tr>
<tr>
<td>MATE 6952</td>
</tr>
<tr>
<td>MATE 6953</td>
</tr>
<tr>
<td>ME 5483</td>
</tr>
<tr>
<td>ME 5713</td>
</tr>
<tr>
<td>ME 5743</td>
</tr>
<tr>
<td>MOT 5243</td>
</tr>
<tr>
<td>MATE 6951</td>
</tr>
</tbody>
</table>

D. Master's Thesis (a minimum of 6 semester credit hours)

- MATE 6983 | Master's Thesis Research

Total Credit Hours

- Nonthesis Option

The degree requires 33 semester credit hours including 30 technical course credits and 3 project credits identified as MATE 6943 Master's Project. A total of 24 semester credit hours, including 9 credits of core courses in Group A and at least 9 credits of concentration courses and 3 credits of another concentration course in Group B, must be taken to satisfy the depth and the breadth requirement. Up to 9 credits may be taken from courses in Group C, including courses from out of the College of Engineering with the approval of the Advanced Materials Engineering Graduate Program Committee. A current list of MATE graduate courses that may be included.

A. Required Core Courses from Group A

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATE 5113</td>
<td>Functions, Evaluations and Synthesis Technology of Advanced Materials</td>
</tr>
<tr>
<td>MOT 5163</td>
<td>Management of Technology</td>
</tr>
</tbody>
</table>

B. Concentration specific courses from Group B

<table>
<thead>
<tr>
<th>Group B. Concentration specific courses:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration I: Multifunctional Electronic, Dielectric, Photonic and Magnetic Materials</td>
</tr>
<tr>
<td>EE 5403</td>
</tr>
<tr>
<td>EE 5503</td>
</tr>
<tr>
<td>EE 5693</td>
</tr>
<tr>
<td>EE 6493</td>
</tr>
<tr>
<td>MATE 5213</td>
</tr>
<tr>
<td>MATE 5223</td>
</tr>
<tr>
<td>MATE 5233</td>
</tr>
<tr>
<td>MATE 5243</td>
</tr>
<tr>
<td>MATE 5253</td>
</tr>
<tr>
<td>MATE 5393</td>
</tr>
</tbody>
</table>

| **Concentration II: Multifunctional Biomedical Materials** |
BME 6933	Tissue-Biomaterials Interactions
BME 6943	Biomaterials and Cell Signaling
BME 6953	Biomaterials for Drug-Delivery/Pharmacology
BME 6963	Fundamentals to Polymer Science with Select Biomedical Applications
BME 6993	Topics in Biomaterials
MATE 5513	Fundamentals of Microfabrication and Application
MATE 5523	Biosensors: Fundamentals and Applications
MATE 5533	Biomaterials
MATE 5543	Current Analytical Tools for Biomaterials Characterizations
MATE 5393	Topics in Advanced Materials Engineering

Total Credit Hours

30
Students must register for 1 semester credit hour of graduate faculty members affiliated with the M.S. in MatE program. Two of the members including the Chair of the Committee must be Committee. The Supervising Committee consists of minimum two (for examination. The examination is to be administered in the form of a comprehensive degree requirement.

Degree candidates are required to pass an oral comprehensive examination. The examination is to be administered in the form of a presentation of the thesis or research project to the student’s Supervising Committee. The Supervising Committee consists of minimum two (for non-thesis option) or three (for thesis option) graduate faculty members; two of the members including the Chair of the Committee must be graduate faculty members affiliated with the M.S. in MatE program. Students must register for 1 semester credit hour of Comprehensive Examination (MATE 6961), for the semester in which the examination is to be taken, if they are not enrolled in other courses.

Doctor of Philosophy Degree in Electrical Engineering

The Department of Electrical and Computer Engineering offers advanced coursework integrated with research leading to the Doctor of Philosophy degree in Electrical Engineering. The program has emphases in five concentrations: Computer Engineering, Systems and Control, Digital Signal Processing, Communications, and Electronic Materials and Devices. The Ph.D. degree in Electrical Engineering will be awarded to candidates who have displayed an in-depth understanding of the subject matter and demonstrated the ability to make an original contribution to knowledge in their field of specialty.

The regulations for this degree comply with the general University regulations (refer to Chapter 2, General Academic Regulations, and Chapter 5, Doctoral Degree Regulations).

Admission Requirements

The minimum requirements for admission to the Doctor of Philosophy in Electrical Engineering degree program are as follows:

- Normally, a student is expected to hold a master’s degree before being granted admission to the program. Only exceptional, well prepared, and highly competitive candidates should apply to enter the Ph.D. program directly upon receiving a bachelor's degree.
- Applicants with a master’s degree must have a grade point average of 3.3 or better in their master’s degree program. Applicants without a master’s degree program must have a grade point average of 3.3 or better in the last 60 semester credit hours of undergraduate coursework in electrical engineering.
- Applicants who would like to transfer in coursework from another institution or applicants admitted without an earned master's degree in electrical engineering may apply a maximum of 27 semester credit hours of previously earned graduate credit toward their doctoral degree. Each student’s transcript will be evaluated by the Doctoral Studies Committee and credit will be designated on a course-by-course basis to satisfy the formal coursework requirements of the degree.
- A satisfactory score, as evaluated by the Doctoral Studies Committee for Electrical Engineering, is required on the Graduate Record Examination (GRE). The GRE score will be considered with other criteria in making admission or competitive scholarship decisions and will not be used as the sole criterion for consideration of the applicant or as the primary criterion to end consideration of the applicant.
- Students whose native language is not English must achieve a minimum score of 550 on the Test of English as a Foreign Language (TOEFL) paper version, 79 on the TOEFL iBT, or 6.5 on the International English Language Testing System (IELTS).
- Letters of recommendation, preferably three, attesting to the applicant’s readiness for doctoral study.

A complete application includes the application form, official transcripts, letters of recommendation, GRE scores, a résumé, a statement of research experience, interests and goals, and the TOEFL or IELTS score for those applicants whose native language is not English. Admission is competitive. Satisfying these requirements does not guarantee admission.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 6963</td>
<td>Fundamentals to Polymer Science with Select Biomedical Applications</td>
</tr>
<tr>
<td>BME 6993</td>
<td>Topics in Biomaterials</td>
</tr>
<tr>
<td>MATE 5513</td>
<td>Fundamentals of Microfabrication and Application</td>
</tr>
<tr>
<td>MATE 5523</td>
<td>Biosensors: Fundamentals and Applications</td>
</tr>
<tr>
<td>MATE 5533</td>
<td>Biomaterials</td>
</tr>
<tr>
<td>MATE 5543</td>
<td>Current Analytical Tools for Biomaterials</td>
</tr>
<tr>
<td>MATE 5393</td>
<td>Topics in Advanced Materials Engineering</td>
</tr>
<tr>
<td>C. Prescribed Electives from Group C</td>
<td>9</td>
</tr>
<tr>
<td>BME 6011</td>
<td>Research Seminar</td>
</tr>
<tr>
<td>BME 6723</td>
<td>Bioinstrumentations</td>
</tr>
<tr>
<td>EE 5293</td>
<td>Topics in Microelectronics</td>
</tr>
<tr>
<td>EE 6991</td>
<td>Research Seminar</td>
</tr>
<tr>
<td>MATE 6951</td>
<td>Directed Research in Advanced Materials Engineering</td>
</tr>
<tr>
<td>MATE 6952</td>
<td>Directed Research in Advanced Materials Engineering</td>
</tr>
<tr>
<td>MATE 6953</td>
<td>Directed Research in Advanced Materials Engineering</td>
</tr>
<tr>
<td>ME 5483</td>
<td>Finite Element Methods</td>
</tr>
<tr>
<td>ME 5713</td>
<td>Mechanical Behavior of Materials</td>
</tr>
<tr>
<td>ME 5743</td>
<td>Composite Materials</td>
</tr>
<tr>
<td>MOT 5243</td>
<td>Essentials of Project and Program Management</td>
</tr>
<tr>
<td>MOT 5253</td>
<td>Starting the High-Tech Firm</td>
</tr>
<tr>
<td>MOT 5313</td>
<td>Emerging Technologies</td>
</tr>
<tr>
<td>MOT 5323</td>
<td>Biotechnology Industry</td>
</tr>
<tr>
<td>MOT 5333</td>
<td>Technological Drivers of Globalization</td>
</tr>
<tr>
<td>MOT 6971</td>
<td>Special Problems</td>
</tr>
<tr>
<td>MOT 6973</td>
<td>Special Problems</td>
</tr>
<tr>
<td>D. Master's Project (a minimum of 3 semester credit hours)</td>
<td>3</td>
</tr>
<tr>
<td>MATE 6943</td>
<td>Master’s Project</td>
</tr>
</tbody>
</table>

Total Credit Hours: 33
Degree Requirements and Program of Study

The degree requires 81 semester credit hours beyond the bachelor’s degree or 54 semester credit hours beyond the master’s degree, passing of qualifying examinations I and II, passing of a dissertation proposal examination, passing of a final oral defense, and acceptance of the Ph.D. dissertation. A two-semester residency research period is required.

The core courses for the five concentrations are listed below:

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 5123</td>
<td>Computer Architecture (Computer Engineering)</td>
</tr>
<tr>
<td>EE 5143</td>
<td>Linear Systems and Control (Systems and Control)</td>
</tr>
<tr>
<td>EE 5163</td>
<td>Digital Signal Processing (Digital Signal Processing)</td>
</tr>
<tr>
<td>EE 5183</td>
<td>Foundations of Communication Theory (Communications)</td>
</tr>
<tr>
<td>EE 5693</td>
<td>Dielectric and Optoelectronic Devices (Electronic Materials and Devices)</td>
</tr>
</tbody>
</table>

81 Semester Credit Hours beyond the Bachelor’s Degree

The course requirements for 81 credit hours include 45 technical course credits, 18 research credits identified as EE 7951, EE 7952, and EE 7953 Doctoral Research and 18 dissertation credits identified as EE 7991 through EE 7993 Doctoral Dissertation. At least two courses must be taken from core courses in two of the five concentration areas outside the student’s concentration, to complete the breadth requirement. No more than 6 credits of independent study should be included. One credit hour of EE 6971 Special Problems is required and up to three credit hours of EE 6971 or EE 6991 Research Seminar can be included. Up to 21 credits may be taken from other graduate courses including at least two courses from outside electrical engineering with approval of the Electrical Engineering Graduate Program Committee.

A. Three core courses including one core course in the student’s area of concentration from the list below: (Substitution is allowed if core courses were taken in the Master’s program):

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 5123</td>
<td>Computer Architecture</td>
</tr>
<tr>
<td>EE 5143</td>
<td>Linear Systems and Control</td>
</tr>
<tr>
<td>EE 5163</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>EE 5183</td>
<td>Foundations of Communication Theory</td>
</tr>
<tr>
<td>EE 5693</td>
<td>Dielectric and Optoelectronic Devices</td>
</tr>
</tbody>
</table>

B. Graduate elective courses

One credit hour of EE 6971 Special Problems is required and up to three credit hours of EE 6971 or EE 6991 Research Seminar can be included. At least two courses (6 credits) from outside electrical engineering with approval of the Electrical Engineering Graduate Program Committee are required. No more than 6 credits of independent study should be included.

C. Research credits identified as EE 7951, EE 7952, and EE 7953

Doctoral Research

D. Dissertation credits identified as EE 7991 through EE 7993

Doctoral Dissertation

Total Credit Hours

54 Semester Credit Hours beyond the Master’s Degree

The course requirements for 54 credit hours include 18 technical course credits, 18 research credits identified as EE 7951, EE 7952, and EE 7953 Doctoral Research and 18 dissertation credits identified as EE 7991 through EE 7993 Doctoral Dissertation. At least three courses must be taken from the five core courses and at least two courses from outside electrical engineering with approval of the Electrical Engineering Graduate Program Committee. An advanced graduate course (non-laboratory intensive) with a specified core course as prerequisite may be used, upon approval of the Graduate Advisor of Record, to satisfy the given core course requirement, if the student took the core (or equivalent) course for credit in a different degree program or at another institution. No more than 6 credits of independent study including those earned towards the Master’s degree should be included. One credit hour of EE 6971 Special Problems is required and up to 3 credit hours of EE 6971 or EE 6991 Research Seminar can be included. A Master’s degree with at least 30 semester credit hours received in a closely-related field is needed for this option.

A. Three core courses including one core course in the student’s area of concentration from the list below: (Substitution is allowed if core courses were taken in the Master’s program):

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 5123</td>
<td>Computer Architecture</td>
</tr>
<tr>
<td>EE 5143</td>
<td>Linear Systems and Control</td>
</tr>
<tr>
<td>EE 5163</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>EE 5183</td>
<td>Foundations of Communication Theory</td>
</tr>
<tr>
<td>EE 5693</td>
<td>Dielectric and Optoelectronic Devices</td>
</tr>
</tbody>
</table>

B. Graduate elective courses

One credit hour of EE 6971 Special Problems is required and up to three credit hours of EE 6971 or EE 6991 Research Seminar including those earned towards the Master’s degree can be included. If not earned in the Master’s program, at least two courses (6 credits) from outside electrical engineering with approval of the Electrical Engineering Graduate Program Committee are required. No more than 6 credits of independent study including those earned towards the Master’s degree should be included.

C. Research credits identified as EE 7951, EE 7952, and EE 7953

Doctoral Research

D. Dissertation credits identified as EE 7991 through EE 7993

Doctoral Dissertation

Total Credit Hours
Advancement to Candidacy

All students seeking a doctoral degree at UTSA must be admitted to candidacy. One of the requirements for admission to candidacy is passing a doctoral qualifying examination. Students should consult the University’s Doctoral Degree Regulations (Chapter 5 in this catalog) for other requirements.

Qualifying Examination

The Ph.D. in Electrical Engineering qualifying examination contains two components: (I) Knowledge Competencies through fulfillment of graduate coursework in both primary and secondary concentration areas and (II) Communication and Research Competencies through submission of a written research proposal followed by an oral presentation to the Candidacy Examination Committee. Successful completion of a candidacy examination is required for formal admission into the Electrical Engineering Doctoral program.

I. Knowledge Competencies

In order to establish knowledge competencies, the student must have a Preliminary Program of Study on file and must submit his or her request in writing to the Graduate Advisor of Record after completion of required coursework. The student must take and pass the concentration-specific written Qualifying Examination to demonstrate readiness to pursue a Ph.D. in the chosen field. The written exam is offered at the beginning of the Spring and Fall semesters. In order to take the written Qualifying Examination, students must have taken three core courses, including one core course of the student’s primary area and two core courses representing the student’s secondary areas, with a grade point average (GPA) of no less than 3.3. No courses with a GPA of less than 3.0 can be counted to satisfy the knowledge competency. An advanced graduate course (non-laboratory intensive) with a specified core course as prerequisite may be used, upon the approval of the Graduate Advisor of Record, to satisfy the given core course requirement, if the student took the core (or equivalent) course for credit in a different degree program or at another institution.

II. Communication and Research Competencies

The purpose of the Exam on Communication and Research Competency is to evaluate the student’s capability to communicate technical materials, in both written and oral forms, in a clear, concise, and well-organized manner.

The Exam on Communication and Research Competency is scheduled during each Fall and Spring semester within one semester after fulfillment of Knowledge Competencies. A Ph.D. supervising professor from the ECE Department should be identified prior to scheduling the exam. The examination includes a written research proposal and an oral presentation on an assigned topic relevant to the student’s area of concentration.

The Candidacy Examination Committee is a three-member subcommittee of the ECE Graduate Committee established to evaluate each candidate. A majority decision is required for passing the exam.

Full-time students who fail their first attempt at the candidacy exams may make a second attempt within one semester or prior to the end of the fourth long semester since the student’s admission to the Ph.D. program, whichever is earlier. No more than two attempts to pass the candidacy exams are permitted.

When both the Knowledge Competency and the Communication and Research Competency requirements are successfully satisfied, the Chair of the Graduate Program Committee will notify the student of his or her formal admission as a candidate to the Electrical Engineering Doctoral program. If a student passes the candidacy exam provisionally with coursework recommendations, including English as a Second Language (ESL) courses, the student will not be advanced to the Dissertation Proposal Examination until all provisional conditions are met.

Dissertation Proposal Examination

Students should take the dissertation proposal exam after they have passed the candidacy exam (and have satisfied provisional conditions, if any), but no later than the seventh long semester after enrolling in the program. The student must be registered and be in good academic standing to hold the dissertation proposal examination. The approved Dissertation Committee, chaired by the student’s Supervising Professor, conducts the dissertation proposal exam.

The dissertation proposal exam consists of a written review of the student’s dissertation research and future research plans, their defense in an oral presentation, followed by a closed oral exam administered by committee members. The committee shall examine the student’s knowledge in the subject area, make recommendations for modifying the research plan, alert the student to related work, and identify potential complications. The committee may recommend additional research and/or coursework as it sees necessary. Major deviation from the proposed research requires the approval of the Dissertation Committee.

Unanimous approval of the Committee is required for the student to pass the exam. Students who fail their first attempt at the dissertation proposal exam are allowed to make a second attempt within one year. No more than two attempts to pass the dissertation proposal exam are permitted.

Final Oral Dissertation Defense

After admission to candidacy and passing the dissertation proposal exam, the next steps are conducting dissertation research, writing the dissertation and passing the final oral defense. The final oral defense is administered and evaluated by the student’s Dissertation Committee. The final oral defense consists of a public presentation of the dissertation, followed by a closed oral defense. The Dissertation Committee must unanimously approve the dissertation.

Integrated B.S./M.S. Program

The integrated B.S./M.S. (Bachelor of Science and Master of Science) program administered by the Department of Electrical and Computer Engineering (ECE) is designed for highly motivated and qualified B.S. students to obtain both an undergraduate degree and an advanced degree within an accelerated timeline. Through this program, motivated B.S. students can start working with the faculty advisors on research projects as early as in their senior year.

Program Admission Requirements

Applications to the B.S./M.S. program must be submitted after the completion of 75 but before 90 semester credit hours of coursework.

Department of Electrical and Computer Engineering
usually when a student is enrolled in his or her junior year or in the sixth semester of the B.S. program.

The B.S./M.S. program applicants must have a minimum of 3.3 grade point average for both cumulative and within the designated major. For qualified applicants, the department will waive the GRE exam requirement. To apply for the program, students need to:

- Apply online under the category of Integrated B.S./M.S. (B.S. in Electrical Engineering, or Computer Engineering and M.S. in Electrical Engineering, Computer Engineering, or Advanced Materials Engineering); and
- Submit an official UTSA transcript and a Proposed Program of Study with an approval from B.S./M.S. advisors.

Submission of both recommendation letters and a personal statement is optional but highly recommended for consideration of scholarships.

Degree Requirements

B.S. Degree Requirement

The current undergraduate degree programs in Electrical Engineering and Computer Engineering require 126 semester credit hours for completion with fifteen of these hours (five 3-hour courses) as technical electives. Students accepted into the Integrated B.S./M.S. program will be required to complete 117 undergraduate semester credit hours and 9 graduate semester credit hours to replace three of the five undergraduate technical elective courses toward the B.S. degree, provided that students pass the corresponding challenge exams for the three undergraduate elective courses. The graduate courses include one of the required core graduate courses and other two technical electives from the same area of concentration. Students may enroll in a cross-listed course and take a challenge exam following the UTSA’s challenge exam procedure to earn undergraduate credits for the graduate course taken (see Footnote 1). Credits earned by challenging UTSA undergraduate courses by examination apply to Bachelor degree requirements. Grades of “CR” are not included in the UTSA grade point average calculation.

A graduate core course taken as an undergraduate must be completed with a grade of “B” or better. If a grade lower than “B” is received, it can be counted as an undergraduate technical elective, but in order to stay in the Integrated B.S./M.S. program, a student must pass one of the graduate core courses with a grade of “B” or better. Undergraduate students not able to satisfy this requirement, or simply wishing to voluntarily withdraw from the Integrated B.S./M.S. program, must use a combination of five undergraduate technical electives and graduate courses to satisfy the original 126-hour regular degree program requirement in order to receive their B.S. degree. Students continuing on in the Integrated B.S./M.S. program will apply 117 undergraduate semester credit hours and 9 semester credit hours of technical elective courses by passing the challenging exams to their B.S. degrees. The 9 graduate semester credit hours taken as an undergraduate will be counted towards the M.S. degree requirement.

M.S. Degree Requirement

A student enrolled in B.S./M.S. program can graduate by completing requirements for a thesis or nonthesis (project) option. I. Thesis Option: The students must complete 30 credit hours including 6 hours of thesis work.

II. Nonthesis Option: The students must complete 33 credit hours including 3 hours of project work.

B.S./M.S. Classification

Once admitted to the B.S./M.S. combined program, students are allowed to take graduate courses as undergraduate students. Students admitted to the Integrated B.S./M.S. program will be reclassified from undergraduate to graduate student status when they have completed 126 semester credit hours of coursework (of any combination of graduate and undergraduate hours) toward their degrees.

1 Currently the Challenging a UTSA Course policy at UTSA applies only to undergraduate courses; thus, this mechanism is valid only if the same graduate course is cross-listed with an undergraduate course or until the procedure is extended to graduate courses.

Advanced Materials Engineering (MATE) Courses

MATE 5103. Principles of Materials Engineering: Fundamentals of Structure, Chemistry, and Physical Properties. (3-0) 3 Credit Hours.

Prerequisite: Graduate standing or consent of instructor. Overviews of the fundamental underpinnings of structure-property relations of materials, which determines their behavior at the macro-, micro-, nano-, molecular- and atomic-levels, as used in passive and active components and systems for applications such as sensing, actuation, energy conversion and storage.

MATE 5113. Functions, Evaluations and Synthesis Technology of Advanced Materials. (3-0) 3 Credit Hours.

Prerequisite: MATE 5103 or consent of instructor. Introduction to state-of-the-art materials processing, properties evaluation, and performance optimization of semiconductor, electroceramics, composites, nanomaterials, and thin films.

MATE 5213. Sensing and Sensor Materials. (3-0) 3 Credit Hours.

Prerequisite: Graduate standing or consent of instructor. Fundamentals of design, fabrication, and evaluation of advanced sensing materials and modern sensor technology.

MATE 5223. Structure-Chemistry-Property Relations in Materials Science and Engineering. (2-3) 3 Credit Hours.

Prerequisite: Graduate standing or consent of instructor. Principles that govern assembly of crystal structures, building models of many of the technologically important crystal structures, and discussion of the impact of structure on the various fundamental mechanisms responsible for important and unique physical properties. Theory and principles are introduced along with hands-on experience of building structure models. Major topics include: Symmetry and Crystal Physics; Density, Mechanical Strength, and Anisotropy; Electronic Transport in Materials; and Thermal Properties.

MATE 5233. Anisotropy and Crystalline Materials. (2-3) 3 Credit Hours.

Prerequisite: MATE 5103 or consent of instructor. Symmetry operations through coordinate transformation matrices and stereographic projections. Tensor operations applied to anisotropic crystals, polar and axial symmetries. Principle and design of sensor applications including pyroelectricity, pyromagnetism, thermal expansion, dielectric constant, magnetic susceptibility, piezoelectricity, piezomagnetism, electrostriction, magnetostriction, index of refraction, and nonlinear optical effects. Mathematica is used to model and analyze a variety of tensor properties.
MATE 5243. Optic and Nonlinear Optical Materials. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing or consent of instructor. Mechanisms of polarization nonlinearity, electromagnetic wave propagation in optical and nonlinear optic materials, optoelectronic materials and their device applications.

MATE 5253. Magnetic Materials and Electromagnetic Engineering. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing or consent of instructor. Fundamental understanding of material responses to applied electromagnetic fields, correlated with time inversion symmetry, material chemistry, crystal structure, and microstructure for controlling and engineering electronic and magnetic properties.

MATE 5393. Topics in Advanced Materials Engineering. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing or consent of instructor. Topics to be selected on the structure and properties, preparation and processing, characterization and performance evaluation of materials, computational modeling and simulation, with emphasis on ceramics, electronic materials, engineered composites for sensor, actuator, energy conversion and storage, or biomedical applications. May be repeated for credit as topics vary for a given concentration.

MATE 5513. Fundamentals of Microfabrication and Application. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing or consent of instructor. This course describes the science of miniaturization which is essential for nanotechnology development. Microfabrication techniques for micro-electro-mechanical systems (MEMS), bioMEMS, microfluidics, and nanomaterials and their applications in biomedical research will be covered.

MATE 5523. Biosensors: Fundamentals and Applications. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing or consent of instructor. This course will cover biosensing basics and in-depth view of device design and performance analysis. Topics include optical, electrochemical, acoustic, piezoelectric, and nano-biosensors. Emphasized applications in biomedical, environmental, and homeland security areas are discussed.

MATE 5533. Biomaterials. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing or consent of instructor. Fundamentals in applications of biomaterials science and engineering principles and concepts for repairing, replacing, and protecting human tissues and organs.

MATE 5543. Current Analytical Tools for Biomaterials Characterizations. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing or consent of instructor. This course introduces the fundamentals of biomaterials characterizations and its limitations. May be repeated for credit when topics vary.

MATE 6941. Master’s Project. (0-0) 1 Credit Hour.
Prerequisites: Consent of the Graduate Advisor of Record and Project Advisor. Conducted under the guidance of the Supervising Professor and the advice of the Master’s Nonthesis Committee. The nonthesis project will be an independent investigation or research in the chosen concentration and is generally completed in one semester. Additionally, the nonthesis investigation will be documented, evaluated by the Master’s Nonthesis Committee, and placed in the student’s record indicating successful completion of the project. May be repeated for credit, but not more than 3 hours will apply to the Master’s degree.

MATE 6942. Master’s Project. (0-0) 2 Credit Hours.
Prerequisites: Consent of the Graduate Advisor of Record and Project Advisor. Conducted under the guidance of the Supervising Professor and the advice of the Master’s Nonthesis Committee. The nonthesis project will be an independent investigation or research in the chosen concentration and is generally completed in one semester. Additionally, the nonthesis investigation will be documented, evaluated by the Master’s Nonthesis Committee, and placed in the student’s record indicating successful completion of the project. May be repeated for credit, but not more than 3 hours will apply to the Master’s degree.

MATE 6943. Master’s Project. (0-0) 3 Credit Hours.
Prerequisites: Consent of the Graduate Advisor of Record and Project Advisor. Conducted under the guidance of the Supervising Professor and the advice of the Master’s Nonthesis Committee. The nonthesis project will be an independent investigation or research in the chosen concentration and is generally completed in one semester. Additionally, the nonthesis investigation will be documented, evaluated by the Master’s Nonthesis Committee, and placed in the student’s record indicating successful completion of the project. May be repeated for credit, but not more than 3 hours will apply to the Master’s degree.

MATE 6951. Directed Research in Advanced Materials Engineering. (0-0) 1 Credit Hour.
Prerequisites: Graduate standing and permission in writing of the instructor and the Graduate Advisor of Record. Independent reading, research, discussion, and/or writing under the direction of a faculty member. For students needing specialized work not normally or not often available as part of the regular course offerings. May be repeated for credit, but not more than 3 hours will apply to the Master’s degree.

MATE 6952. Directed Research in Advanced Materials Engineering. (0-0) 2 Credit Hours.
Prerequisites: Graduate standing and permission in writing of the instructor and the Graduate Advisor of Record. Independent reading, research, discussion, and/or writing under the direction of a faculty member. For students needing specialized work not normally or not often available as part of the regular course offerings. May be repeated for credit, but not more than 3 hours will apply to the Master’s degree.

MATE 6953. Directed Research in Advanced Materials Engineering. (0-0) 3 Credit Hours.
Prerequisites: Graduate standing and permission in writing of the instructor and the Graduate Advisor of Record. Independent reading, research, discussion, and/or writing under the direction of a faculty member. For students needing specialized work not normally or not often available as part of the regular course offerings. May be repeated for credit, but not more than 3 hours will apply to the Master’s degree.

MATE 6961. Comprehensive Examination. (0-0) 1 Credit Hour.
Prerequisite: Consent of the Graduate Advisor of Record. Independent study course for the purpose of taking the Comprehensive Examination. May be repeated for credit as many times as approved by the Graduate Studies Committee. Enrollment is required each term in which the Comprehensive Examination is taken if no other courses are being taken that term. The grade report for the course is either “CR” (satisfactory performance on the Comprehensive Examination) or “NC” (unsatisfactory performance on the Comprehensive Examination).
MATE 6981. Master’s Thesis Research. (0-0) 1 Credit Hour.
Prerequisites: Consent of the Graduate Advisor of Record and Thesis Advisor. Thesis research and preparation conducted under the guidance of the Supervising Professor and the advice of the Master’s Thesis Committee. The thesis is an original contribution to scholarship, based on intensive independent investigation or graduate research in the chosen concentration. Thesis option students are required to successfully present and defend their thesis which serves as the oral comprehensive examination for the thesis option. Final approval of the thesis by the Graduate School will serve as an indication of the success completion of the research. May be repeated for credit, but not more than 6 hours will apply to the Master’s degree. Credit will be awarded upon completion of the thesis. Enrollment is required each term in which the thesis is in progress.

MATE 6982. Master’s Thesis Research. (0-0) 2 Credit Hours.
Prerequisites: Consent of the Graduate Advisor of Record and Thesis Advisor. Thesis research and preparation conducted under the guidance of the Supervising Professor and the advice of the Master’s Thesis Committee. The thesis is an original contribution to scholarship, based on intensive independent investigation or graduate research in the chosen concentration. Thesis option students are required to successfully present and defend their thesis which serves as the oral comprehensive examination for the thesis option. Final approval of the thesis by the Graduate School will serve as an indication of the success completion of the research. May be repeated for credit, but not more than 6 hours will apply to the Master’s degree. Credit will be awarded upon completion of the thesis. Enrollment is required each term in which the thesis is in progress.

MATE 6983. Master’s Thesis Research. (0-0) 3 Credit Hours.
Prerequisites: Consent of the Graduate Advisor of Record and Thesis Advisor. Thesis research and preparation conducted under the guidance of the Supervising Professor and the advice of the Master’s Thesis Committee. The thesis is an original contribution to scholarship, based on intensive independent investigation or graduate research in the chosen concentration. Thesis option students are required to successfully present and defend their thesis which serves as the oral comprehensive examination for the thesis option. Final approval of the thesis by the Graduate School will serve as an indication of the success completion of the research. May be repeated for credit, but not more than 6 hours will apply to the Master’s degree. Credit will be awarded upon completion of the thesis. Enrollment is required each term in which the thesis is in progress.

Computer Engineering (CPE) Courses

CPE 6941. Graduate Project. (0-0) 1 Credit Hour.
Prerequisites: Consent of the Graduate Advisor of Record and Project Advisor. A semester-long project with approval of a supervising faculty. Credit will be awarded upon successful submission of a written report and oral presentation to a project committee. May be repeated for credit, but not more than 3 hours will apply to the Master’s degree. Enrollment is required each term in which the project is in progress.

CPE 6942. Graduate Project. (0-0) 2 Credit Hours.
Prerequisites: Consent of the Graduate Advisor of Record and Project Advisor. A semester-long project with approval of a supervising faculty. Credit will be awarded upon successful submission of a written report and oral presentation to a project committee. May be repeated for credit, but not more than 3 hours will apply to the Master’s degree. Enrollment is required each term in which the project is in progress.

CPE 6943. Graduate Project. (0-0) 3 Credit Hours.
Prerequisites: Consent of the Graduate Advisor of Record and Project Advisor. A semester-long project with approval of a supervising faculty. Credit will be awarded upon successful submission of a written report and oral presentation to a project committee. May be repeated for credit, but not more than 3 hours will apply to the Master’s degree. Enrollment is required each term in which the project is in progress.

CPE 6951. Independent Study. (0-0) 1 Credit Hour.
Prerequisites: Graduate standing and permission in writing (form available) of the instructor and the Graduate Advisor of Record. Independent reading, research, discussion, and/or writing under the direction of a faculty member. For students needing specialized work not normally or not often available as part of the regular course offerings. May be repeated for credit, but not more than 6 hours, regardless of discipline, will apply to the degree.

CPE 6952. Independent Study. (0-0) 2 Credit Hours.
Prerequisites: Graduate standing and permission in writing (form available) of the instructor and the Graduate Advisor of Record. Independent reading, research, discussion, and/or writing under the direction of a faculty member. For students needing specialized work not normally or not often available as part of the regular course offerings. May be repeated for credit, but not more than 6 hours, regardless of discipline, will apply to the degree.

CPE 6953. Independent Study. (0-0) 3 Credit Hours.
Prerequisites: Graduate standing and permission in writing (form available) of the instructor and the Graduate Advisor of Record. Independent reading, research, discussion, and/or writing under the direction of a faculty member. For students needing specialized work not normally or not often available as part of the regular course offerings. May be repeated for credit, but not more than 6 hours, regardless of discipline, will apply to the degree.

Electrical Engineering (EE) Courses

EE 5103. Engineering Programming. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing or consent of instructor. Object oriented programming for engineering design problems using C++; software development for mathematical modeling and simulation of hardware systems; extraction and reporting (e.g., text processing) using scripting languages such as Perl; and individual class projects.
EE 5113. VLSI System Design. (3-1) 3 Credit Hours.
Prerequisite: Graduate standing or consent of instructor. VLSI Circuit Design, CMOS technology and device modeling, structured digital circuits, VLSI systems; computer-aided design tools, placement, routing, extraction, design rule checking, graphic editors, simulation, verification, minimization, silicon compilation, test pattern generation, theory for design automation, and chip design. (Formerly EE 5323 Topic 1: VLSI I. Credit cannot be earned for both EE 5113 and EE 5323 VLSI I).

EE 5123. Computer Architecture. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing or consent of instructor. Description of digital computer systems, arithmetic algorithms, central processor design, memory hierarchies and virtual memory, control unit and microprogramming, input and output, coprocessors, and multiprocessing.

EE 5143. Linear Systems and Control. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing or consent of instructor. Advanced methods of analysis and synthesis of linear systems, continuous and discrete-time systems, analytical approach to linear control theory.

EE 5153. Random Signals and Noise. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing or consent of instructor. Study of probability theory, random processes, mean and autocorrelation, stationarity and ergodicity, Gaussian and Markov processes, power spectral density, noise, and linear systems.

EE 5163. Digital Signal Processing. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing or consent of instructor. Study of discrete-time signals and systems, including Z-transforms, fast Fourier transforms, and digital filter theory. Filter design and effects of finite register length, and applications to one-dimensional signals.

EE 5183. Foundations of Communication Theory. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing or consent of instructor, completion of EE 5153 recommended. Basis functions, orthogonalization of signals, vector representation of signals, optimal detection in noise, matched filters, pulse shaping, intersymbol interference, maximum likelihood detection, channel cutoff rates, error probabilities, bandwidth, and power-limited signaling.

EE 5193. FPGA and HDL. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing or consent of instructor. Fundamental digital systems principles. HDL modeling concepts and styles: structural, RTL, and behavioral; modeling for synthesis and verification; modeling combinatorial and sequential logic circuits; modeling finite state machines; testbench developments; performance estimation and improvement. (Formerly EE 5223 Topic 2: FPGA and HDL. Credit cannot be earned for both EE 5193 and EE 5223 FPGA and HDL).

EE 5223. Topics in Digital Design. (3-0) 3 Credit Hours.
Prerequisite: EE 5123 or consent of instructor. Topics may include the following: Topic 1: Graph Theory and Networking. Introduction to graphs and digraphs, applications of graphs, Eulerian and Hamiltonian graphs, connectivity, trees, planar graphs, decomposition problems, graph models for electrical and communications networks and computer architectures, communications network application examples, analysis and design. Topic 2: Microcomputer-Based Systems. 8- and 16-bit microprocessors, bus timing analysis, interfacing principles, LSI and VLSI chip interfacing, use of software development tools such as assemblers, compilers, and simulators, and hardware development tools including logic analyzer. Topic 3: PCI System Design. Understanding PCI specifications including protocol, electrical, mechanical, and timing. Study the protocol for high-speed, high-bandwidth data throughput. Designing a PCI-based system design and implementing in FPGA. May be repeated for credit as topics vary.

EE 5243. Topics in Systems and Control. (3-0) 3 Credit Hours.

EE 5263. Topics in Digital Signal Processing and Digital Filtering. (3-0) 3 Credit Hours.
EE 5283. Topics in Communication Systems. (3-0) 3 Credit Hours.

EE 5293. Topics in Microelectronics. (3-0) 3 Credit Hours.
Prerequisite: EE 4313. Topics may include the following: Topic 1: Analog Integrated Circuit Design. Introduction to MOS devices and analog circuit modeling. Analog circuits: active resistors, current sources, current mirrors, current amplifiers, inverting amplifier, differential amplifier, cascade amplifier, MOS switches, and the output amplifier. Complex circuits: comparators, operational amplifiers, and other commonly used building blocks for mixed signal systems. Use of CAD tools to layout and simulate analog circuits. Topic 2: Mixed Signal Circuits and Systems. Introduction to the circuits of systems in which analog and mixed signal integrated circuit design are employed. The topics are A/D and D/A converters, including Nyquist-rate and oversampling A/D converters, switched capacitor filters, multipliers, oscillators, the PLL, and circuit design issues, testing, digital calibration and correction. May be repeated for credit as topics vary.

EE 5323. Topics in VLSI Design. (3-0) 3 Credit Hours.
Prerequisite: EE 5113 or consent of instructor. Topic 1: Advanced VLSI Design. Microelectronic systems architecture; VLSI circuit testing methods; integration of heterogeneous computer-aided design tools; wafer scale integration; advanced high-speed circuit design and integration. Engineering design of large-scale integrated circuits, systems, and applications; study of advanced design techniques, architectures, and CAD methodologies. Topic 2: Low Power VLSI Design. Hierarchy of limits of power, source of power consumption, voltage scaling approaches; circuit, logic, architecture and system level power optimization; power estimation; advanced techniques for power optimization; software design for low power. Topic 3: VLSI Testing. Digital system design verification; logic and fault simulation; testbench guidelines; functional coverage; VLSI manufacturing test; fault modeling; testability measures; Design for Testability (DFT); and Automatic Test Pattern Generation (ATPG). Topic 4: VLSI Performance Analysis and Optimization. Delay models, delay calculation, signal integrity effects, timing analysis, performance variability, performance optimization, and delay test. May be repeated for credit as topics vary.

EE 5343. Intelligent Control and Robotics. (3-0) 3 Credit Hours.
Prerequisite: EE 5143. Study of artificial neural networks control, knowledge-based control, and fuzzy-logic control. Analytical techniques and fundamental principles of robotics; dynamics of robot arms, motion control, robot sensing, and robot intelligence.
EE 5353. Topics in Multimedia Signal Processing. (3-0) 3 Credit Hours.
Prerequisite: EE 5153 or EE 5163, or consent of instructor. Topics may include the following: Topic 1: Digital Image Processing. Study of binary image processing; histogram and point operations; algebraic and geometric image operations; 2-D digital Fourier transforms; convolution; linear and nonlinear filtering; morphological filters; image enhancement; linear image restoration (deconvolution); digital image coding and compression; and digital image analysis. (Formerly EE 5363. Credit cannot be earned for both EE 5353 Topic 1: Digital Image Processing and EE 5363.) Topic 2: Computer Vision and Application. Image perception, edge detection in the visual system, future vectors, image enhancement, shape from shading, image segmentation by textural perception in humans, chain codes, B-splines, classification (SVM and others). Topic 3: Biomedical Image Processing. This course will examine the fundamental and mathematical aspects of imaging; new algorithms and mathematical tools for the advanced processing of medical and biological images, which include fundamental methods of image reconstruction from their projections, multi-modal imaging, image analysis and visualization, image enhancement, image segmentation and gene-expression calculation, image parameter estimation and measurements, target location, texture synthesis and analysis, morphological image processing, processing of microarray images, processing of FISH stacked images, automated analysis of gene copy numbers by fluorescence in situ hybridization, image acquisition and processing in major imaging techniques, including magnetic resonance, 2-D and 3-D computed tomography, positron emission tomography, and others. Topic 4: Development of Multimedia Applications for Wireless Devices. Programming on wireless systems. Multimedia (image, audio and video) formats. Multimedia processing. Development of sample applications. May be repeated for credit as topics vary.

EE 5373. Wireless Communication. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing or consent of instructor. This course offers in-depth study of wireless communication systems at the physical layer, propagation modeling for wireless systems, modulation schemes used for wireless channels, diversity techniques and multiple antenna systems, and multiple access schemes used in wireless systems.

EE 5403. Advanced Dielectric and Optoelectronic Engineering Laboratory. (2-4) 3 Credit Hours.
Prerequisite: Graduate standing or consent of instructor. Topic 1: Principles of Dielectric Devices. Evaluation of capacitance devices, impedance frequency and temperature spectrum analysis, characterization of tunable dielectric microwave materials, characterization of piezoelectric devices. Topic 2: Principles of Optical Components and Systems. Lasers, photo-detectors, phase locked interferometer, electro-optical and nonlinear optic devices, optical image processing, Fourier optics, holographic recording, and photorefractive storage. May be repeated for credit as topics vary.

EE 5423. Topics in Computer Architecture. (3-0) 3 Credit Hours.
Prerequisite: EE 5123 or consent of instructor. Topic 1: Parallel and Distributed Computing. Multiprocessor and multicore systems, shared-memory and distributed memory systems, exploitation of parallelism, data partitioning and task scheduling, multiprocessor system interconnects, message passing and data routing, parallel programming. Topic 2: RISC Processor Design, RISC Concept. RISC versus CISC, RISC advantages and disadvantages, various processor survey and applications, study of software development tools: assemblers, compilers, simulators, RISC implementations. Topic 3: Superscalar Microprocessor Architecture. Definition of superscalar, superpipelined, and VLIW processors; available parallelism in programs; branch prediction techniques; memory systems for superscalar processors; trace caches; memory disambiguation and load/store recording; performance evaluation techniques; multimedia extensions in superscalar processors. Topic 4: Fault Tolerance and Reliable System Design. Reliability and availability techniques, maintainability and testing techniques, evaluation criteria, fault-tolerant computing, fault-tolerant multiprocessors, design methodology for high reliability systems. Topic 5: Computer Arithmetic. Fundamental principles of algorithms for performing arithmetic operations in digital computers. Number systems, fast implementations of arithmetic operations and elementary functions, design of arithmetic units using CAD tools. Topic 6: Advanced Computer Architecture. Superscalar and vector processors, advanced pipelining techniques, instruction-level parallelism and dynamic scheduling techniques, advanced memory hierarchy design. May be repeated for credit as topics vary.

EE 5443. Discrete-Time Control Theory and Design. (3-0) 3 Credit Hours.
Prerequisite: EE 5143. Control theory relevant to deterministic and stochastic analysis and design of computer-controlled systems using both state-space and input-output models.

EE 5453. Topics in Software Engineering. (3-0) 3 Credit Hours.
Prerequisite: EE 5123 or consent of instructor. Topic 1: Large Domain-Specific Software Architectures. Software engineering approaches; scenario-based design processes to analyze large problem domains; domain modeling and representations; creation of component-based architecture providing an object-oriented representation of system requirements; and development of large software class project. Topic 2: Embedded Software Systems Design. Dataflow models, uniprocessor and multiprocessor scheduling, hardware/software codeign, hierarchical finite state machines, synchronous languages, reactive systems, and heterogeneous systems. Topic 3: Embedded Software Testing and Quality Assurance. Systematic testing of embedded software systems; unit (module), integration and system level testing; software verification; hardware/software co-testing; code inspections; use of metrics; quality assurance; measurement and prediction of software reliability; software maintenance; software reuse and reverse engineering. Topic 4: Advanced Engineering Programming. Programming in the cloud, advanced engineering design problems and techniques using C++ and Java, advanced data structures and complexity analysis of algorithms, dynamic programming using Perl and Python, and large-scale and real-world group and individual projects. May be repeated for credit as topics vary.

EE 5473. Fiber Optic Communication. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing or consent of instructor. In-depth study of fiber optic principles, performance of optical receivers, devices, digital and analog fiber optic transmission systems, wavelength division multiplexing systems, optical amplifiers, and fiber optic measurements.
EE 5503. Introduction to Micro and Nanotechnology. (2-3) 3 Credit Hours.
Prerequisite: Graduate standing or completion of or concurrent enrollment in EE 3323. Survey of micro-fabrication techniques, scaling laws, mechanical, optical and thermal transducers, micro-fluidic applications, nanostructures. (Same as ME 5883. Credit cannot be earned for both EE 5503 and ME 5883).

EE 5583. Topics in Digital Communication. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing or consent of instructor. Topics may include the following: Topic 1: Digital Information Theory. Entropy and mutual information; Huffman coding; source and channel coding theorems; channel capacity; block coding error bounds; random coding bounds; cutoff rate; multiuser information theory; random access channels and protocols; multiaccess coding methods. Topic 2: Digital Modulation Schemes. In-depth study of digital modulation; information sources and source coding, quantization, representation of digitally modulated signals; synchronization and timing issues in digital communications. Topic 3: Computer Communication Networks. Fundamentals of communication networks, data communication and transmission systems, peer-to-peer protocols, local/wide area networks, multiple access methods, and service integration. Topic 4: Coding and Error Correction. Algebraic Coding Theory; groups and fields, linear codes, Hamming distance, cyclic codes, minimum distance bounds, BACH codes and algebraic decoding, Reed-Solomon codes, Reed-Mueller codes and maximum likelihood decoding, suboptimal decoding, and applications of coding. May be repeated for credit as topics vary.

EE 5593. Topics in Advanced Sensor Devices. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing or consent of instructor. Fundamentals of materials parameters to design nano-micro level pyroelectric, piezoelectric, ferroelectric and various electronic sensors and actuators. May be repeated for credit as topics vary.

EE 5693. Dielectric and Optoelectronic Devices. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing or consent of instructor. Introduction to functional dielectric and optoelectronic materials and devices. Dielectric polarization, relaxation, loss and breakdown properties. Mechanisms of piezoelectric, pyroelectric, and electro-optic properties of solid state materials.

EE 6343. Advanced Topics in Systems and Control. (3-0) 3 Credit Hours.
Prerequisites: Consent of Graduate Advisor of Record and Dissertation Director. Current topics in the systems and control area. May be repeated for credit as topics vary.

EE 6363. Advanced Topics in Signal Processing. (3-0) 3 Credit Hours.
Prerequisites: Consent of Graduate Advisor of Record and Dissertation Director. Current topics in the signal processing area. May be repeated for credit as topics vary.

EE 6383. Advanced Topics in Communications. (3-0) 3 Credit Hours.
Prerequisites: Consent of Graduate Advisor of Record and Dissertation Director. Current topics in the communications area. May be repeated for credit as topics vary.

EE 6493. Advanced Topics in Electronic Materials and Devices. (2-3) 3 Credit Hours.
Prerequisites: EE 5693 and EE 5503 or EE 5593 or consent of instructor. Topics to be selected from advanced sensors, actuators, engineered materials, device physics, microwave applications of MEMS structures, optoelectronics and photonics, microelectronic devices and nanotechnology. May be repeated for credit as topics vary.

EE 6931. Graduate Research Internship. (0-0) 1 Credit Hour.
Prerequisite: Graduate standing in electrical and computer engineering and consent of instructor. Research associated with enrollment in the Graduate Research Internship Program. The grade report for the course is either “CR” (satisfactory performance on Graduate Research Internship) or “NC” (unsatisfactory performance on Graduate Research Internship).

EE 6932. Graduate Research Internship. (0-0) 2 Credit Hours.
Prerequisite: Graduate standing in electrical and computer engineering and consent of instructor. Research associated with enrollment in the Graduate Research Internship Program. The grade report for the course is either “CR” (satisfactory performance on Graduate Research Internship) or “NC” (unsatisfactory performance on Graduate Research Internship).

EE 6933. Graduate Research Internship. (0-0) 3 Credit Hours.
Prerequisite: Graduate standing in electrical and computer engineering and consent of instructor. Research associated with enrollment in the Graduate Research Internship Program. The grade report for the course is either “CR” (satisfactory performance on Graduate Research Internship) or “NC” (unsatisfactory performance on Graduate Research Internship).

EE 6941. Graduate Project. (0-0) 1 Credit Hour.
Prerequisites: Consent of the Graduate Advisor of Record and Project Advisor. A semester-long project with approval of a supervising faculty. Credit will be awarded upon successful submission of a written report and oral presentation to a project committee. May be repeated for credit, but not more than 3 hours will apply to the Master’s degree. Enrollment is required each term in which the project is in progress. (Formerly EE 6963.).

EE 6942. Graduate Project. (0-0) 2 Credit Hours.
Prerequisites: Consent of the Graduate Advisor of Record and Project Advisor. A semester-long project with approval of a supervising faculty. Credit will be awarded upon successful submission of a written report and oral presentation to a project committee. May be repeated for credit, but not more than 3 hours will apply to the Master’s degree. Enrollment is required each term in which the project is in progress. (Formerly EE 6963.).

EE 6943. Graduate Project. (0-0) 3 Credit Hours.
Prerequisites: Consent of the Graduate Advisor of Record and Project Advisor. A semester-long project with approval of a supervising faculty. Credit will be awarded upon successful submission of a written report and oral presentation to a project committee. May be repeated for credit, but not more than 3 hours will apply to the Master’s degree. Enrollment is required each term in which the project is in progress. (Formerly EE 6963.).

EE 6951. Independent Study. (0-0) 1 Credit Hour.
Prerequisites: Graduate standing and permission in writing (form available) of the instructor and the Graduate Advisor of Record. Independent reading, research, discussion, and/or writing under the direction of a faculty member. For students needing specialized work not normally or not often available as part of the regular course offerings. May be repeated for credit, but not more than 6 hours, regardless of discipline, will apply to the degree.
EE 6952. Independent Study. (0-0) 2 Credit Hours.
Prerequisites: Graduate standing and permission in writing (form available) of the instructor and the Graduate Advisor of Record. Independent reading, research, discussion, and/or writing under the direction of a faculty member. For students needing specialized work not normally or not often available as part of the regular course offerings. May be repeated for credit, but not more than 6 hours, regardless of discipline, will apply to the degree.

EE 6953. Independent Study. (0-0) 3 Credit Hours.
Prerequisites: Graduate standing and permission in writing (form available) of the instructor and the Graduate Advisor of Record. Independent reading, research, discussion, and/or writing under the direction of a faculty member. For students needing specialized work not normally or not often available as part of the regular course offerings. May be repeated for credit, but not more than 6 hours, regardless of discipline, will apply to the degree.

EE 6961. Comprehensive Examination. (0-0) 1 Credit Hour.
Prerequisite: Consent of the Graduate Advisor of Record. Independent study course for the purpose of taking the Comprehensive Examination. May be repeated for credit as many times as approved by the Graduate Studies Committee. Enrollment is required each term in which the Comprehensive Examination is taken if no other courses are being taken that term. The grade report for the course is either “CR” (satisfactory performance on the Comprehensive Examination) or “NC” (unsatisfactory performance on the Comprehensive Examination).

EE 6971. Special Problems. (1-0) 1 Credit Hour.
Prerequisite: Consent of instructor. An organized course offering the opportunity for specialized study not normally or not often available as part of the regular course offerings. Special Problems courses may be repeated for credit when topics vary, but not more than 6 hours, regardless of discipline, may be applied to the degree.

EE 6972. Special Problems. (2-0) 2 Credit Hours.
Prerequisite: Consent of instructor. An organized course offering the opportunity for specialized study not normally or not often available as part of the regular course offerings. Special Problems courses may be repeated for credit when topics vary, but not more than 6 hours, regardless of discipline, may be applied to the degree.

EE 6973. Special Problems. (3-0) 3 Credit Hours.
Prerequisite: Consent of instructor. An organized course offering the opportunity for specialized study not normally or not often available as part of the regular course offerings. Special Problems courses may be repeated for credit when topics vary, but not more than 6 hours, regardless of discipline, may be applied to the degree.

EE 6981. Master’s Thesis. (0-0) 1 Credit Hour.
Prerequisites: Consent of the Graduate Advisor of Record and thesis director. Thesis research and preparation. May be repeated for credit, but not more than 6 hours will apply to the Master’s degree. Credit will be awarded upon completion of the thesis. Enrollment is required each term in which the thesis is in progress.

EE 6982. Master’s Thesis. (0-0) 2 Credit Hours.
Prerequisites: Consent of the Graduate Advisor of Record and thesis director. Thesis research and preparation. May be repeated for credit, but not more than 6 hours will apply to the Master’s degree. Credit will be awarded upon completion of the thesis. Enrollment is required each term in which the thesis is in progress.

EE 6983. Master’s Thesis. (0-0) 3 Credit Hours.
Prerequisites: Consent of the Graduate Advisor of Record and thesis director. Thesis research and preparation. May be repeated for credit, but not more than 6 hours will apply to the Master’s degree. Credit will be awarded upon completion of the thesis. Enrollment is required each term in which the thesis is in progress.

EE 6991. Research Seminar. (1-0) 1 Credit Hour.
Organized research lectures and seminar presentations. The grade report for this course is either “CR” (satisfactory participation in the seminar) or “NC” (unsatisfactory participation in the seminar). This course may include a written component. May be repeated for credit, but not more than 1 hour will apply to the Master’s degree, regardless of discipline.

EE 7443. Nonlinear Control Systems. (3-0) 3 Credit Hours.
Prerequisite: EE 5143. Principles of nonlinear systems modeling and analysis: Lyapunov stability, input-output stability, and homogeneous theory. Control of nonlinear systems: integrator backstepping, feedback domination, Lyapunov-based design, small control technique, output feedback design, and applications to physical systems.

EE 7951. Doctoral Research. (0-0) 1 Credit Hour.
Prerequisites: Ph.D. student standing and consent of instructor and the Graduate Advisor of Record. May be repeated for a maximum credit of 18 hours.

EE 7952. Doctoral Research. (0-0) 2 Credit Hours.
Prerequisites: Ph.D. student standing and consent of instructor and the Graduate Advisor of Record. May be repeated for a maximum credit of 18 hours.

EE 7953. Doctoral Research. (0-0) 3 Credit Hours.
Prerequisites: Ph.D. student standing and consent of instructor and the Graduate Advisor of Record. May be repeated for a maximum credit of 18 hours.

EE 7991. Doctoral Dissertation. (0-0) 1 Credit Hour.
Prerequisites: Consent of the Doctoral Advisor of Record and Dissertation Advisor. May be repeated for a maximum credit of 18 hours.

EE 7992. Doctoral Dissertation. (0-0) 2 Credit Hours.
Prerequisites: Consent of the Doctoral Advisor of Record and Dissertation Advisor. May be repeated for a maximum credit of 18 hours.

EE 7993. Doctoral Dissertation. (0-0) 3 Credit Hours.
Prerequisites: Consent of the Doctoral Advisor of Record and Dissertation Advisor. May be repeated for a maximum credit of 18 hours.