Department of Biomedical Engineering

The Department of Biomedical Engineering offers the Master of Science degree in Biomedical Engineering and the Doctor of Philosophy degree in Biomedical Engineering.

- M.S. in Biomedical Engineering (p. 1)
- Ph.D. in Biomedical Engineering (p. 3)

Master of Science Degree in Biomedical Engineering

A Master of Science (M.S.) degree in Biomedical Engineering (BME) at The University of Texas at San Antonio (UTSA) is offered through a joint graduate program with The University of Texas Health Science Center at San Antonio (UTHSCSA). A matrix of academic tracks is offered based on segments of biomedical engineering and/or areas of clinical emphasis. Specifically, the program has emphases in the following areas: biomaterials, biomechanics, and bioimaging. The biological areas covered are orthopedics/dental tissues, cardiovascular systems, and neural systems. The M.S. degree in Biomedical Engineering (Thesis Option or Nonthesis Option) will be awarded to candidates who have displayed an in-depth understanding of the concepts that are necessary for critically judging the scientific literature, for formulating novel hypotheses, designing experimental protocols to test the hypotheses, interpreting their results and demonstrating their ability to make an original contribution to knowledge in the biomedical field.

The regulations for this degree comply with the general University regulations (refer to Chapter 2, General Academic Regulations, and Chapter 4, Master’s Degree Regulations).

Admission Requirements

Students who hold an undergraduate degree may apply to the program. The minimum requirements for admission to the Master of Science degree in Biomedical Engineering program are described below. Note that admission is competitive and satisfying these requirements does not guarantee admission.

- Applicants must have a grade point average of 3.0 or better in the last 60 semester credit hours of coursework with a major in a recognized science or engineering discipline. All students should have had sufficient background in engineering, chemistry, biology, and physics prior to being admitted to the program. It is expected that these students will have B.S. degrees with an emphasis in either engineering, physical science, or biological science disciplines. All students are required to have completed at least one year of engineering physics, chemistry, biology, and mathematics (up to Differential Equations I or Applied Engineering Analysis I). Students with deficiencies in the above courses will be required to satisfactorily complete selected courses as a condition of acceptance.
- A satisfactory score, as evaluated by the Admissions Committee for Biomedical Engineering, is required on the Graduate Record Examination (GRE). Students whose native language is not English must achieve a minimum score of 550 on the Test of English as a Foreign Language (TOEFL) paper version or 79 on the Internet version. The applicant’s performance on a standardized test will be considered in addition to other criteria for admission or competitive scholarship awards and will not be used as the sole criterion for consideration of an applicant.
- Three letters of recommendation attesting to the applicant's readiness for graduate study.
- A complete application includes the application form, official transcripts, letters of recommendation, GRE scores, a résumé, and a statement of the applicant’s research experience, interests, and goals. TOEFL scores are required for those applicants whose native language is not English.

Degree Requirements and Program of Study

- Thesis Option

Typically, a Master’s degree program of study will consist of at least 32 semester credit hours beyond the bachelor's degree. Undergraduate courses, general education courses, and prerequisites for graduate courses cannot be counted toward this total. For transferring students, course credit allowed for transfer will be decided on a case-by-case basis by the Biomedical Engineering Committee on Graduate Studies (COGS). If recommended by the COGS, the request will then be submitted to the Dean of the Graduate School for approval. Since this is a joint graduate program, some courses are offered at The University of Texas Health Science Center at San Antonio (UTHSCSA). To enroll in UTHSCSA courses (UTHSCSA Catalog [http://catalog.uthscsa.edu]), students must register through the UTHSCSA Web site (http://www.uthscsa.edu). Any questions concerning registration at UTHSCSA should be directed to the BME Program Office at UTHSCSA. The required curriculum for all students in the Thesis Option is as follows:

A. Core courses

Required Core Courses offered at UTSA:
- BME 6033 BME Engineering Analysis
- BME 6703 Biomedical Imaging
- BME 6803 Experimental Biomechanics
- BME 6903 Biomaterials

Required Core Courses offered at UTHSCSA: 1
- BIME 6004 Biology for Bioengineers 1
- BIME 6006 Physiology for BME 1
- TSCI 5070 Responsible Conduct of Patient-Oriented Clinical Research

B. Research seminar

- BME 6011 (or BIME 6090 at UTHSCSA) is required for three semesters, in order to satisfy the requirements for the Master’s degree program in Biomedical Engineering.

C. Elective courses

A minimum of 6 semester credit hours of elective courses selected from the list below. Courses from this list may be taken with the approval of the Program Director, Supervising Professor, and course instructor.

UTSA Prescribed Elective Courses:
- BIO 5433 Neurophysiology
- BIO 5483 Computational Neuroscience
- BIO 5503 Sensory Physiology
- BME 6053 Independent Study in Biomedical Engineering (or BME 6052, BME 6051)
- BME 6093 Topics in Biomedical Engineering
- BME 6111 Introduction to Clinical Practices
- BME 6123 Medical Device Design

1
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 6143</td>
<td>Biomedical Device Development</td>
</tr>
<tr>
<td>BME 6203</td>
<td>Physiology for Engineers</td>
</tr>
<tr>
<td>BME 6213</td>
<td>Cellular Engineering</td>
</tr>
<tr>
<td>BME 6223</td>
<td>Transport Processes in Biological Systems</td>
</tr>
<tr>
<td>BME 6233</td>
<td>Cardiovascular Bioengineering</td>
</tr>
<tr>
<td>BME 6243</td>
<td>Mechanobiology</td>
</tr>
<tr>
<td>BME 6253</td>
<td>Bioheat Transfer</td>
</tr>
<tr>
<td>BME 6313</td>
<td>Computational Bioengineering and Biomedicine</td>
</tr>
<tr>
<td>BME 6323</td>
<td>Bioinformatics</td>
</tr>
<tr>
<td>BME 6333</td>
<td>Stochastic Modeling in Bioengineering</td>
</tr>
<tr>
<td>BME 6343</td>
<td>Statistical Pattern Recognition and Data Mining in Biomedical Engineering</td>
</tr>
<tr>
<td>BME 6353</td>
<td>Computational Methods in Mass Spectrometry</td>
</tr>
<tr>
<td>BME 6363</td>
<td>Multiscale Computational Modeling of Biomedical Systems</td>
</tr>
<tr>
<td>BME 6523</td>
<td>Biological Laboratory Techniques in Biomedical Engineering</td>
</tr>
<tr>
<td>BME 6723</td>
<td>Bioinstrumentations</td>
</tr>
<tr>
<td>BME 6733</td>
<td>Microfabrication and Application</td>
</tr>
<tr>
<td>BME 6743</td>
<td>Biophotonics</td>
</tr>
<tr>
<td>BME 6753</td>
<td>Biosensors: Fundamentals and Applications</td>
</tr>
<tr>
<td>BME 6793</td>
<td>Topics in Image and Signal Processing</td>
</tr>
<tr>
<td>BME 6823</td>
<td>Advanced Biomechanics</td>
</tr>
<tr>
<td>BME 6843</td>
<td>Tissue Mechanics</td>
</tr>
<tr>
<td>BME 6863</td>
<td>Mechanical Behavior of Living Tissues</td>
</tr>
<tr>
<td>BME 6873</td>
<td>Biofluid Mechanics</td>
</tr>
<tr>
<td>BME 6893</td>
<td>Topics in Biomechanics</td>
</tr>
<tr>
<td>BME 6913</td>
<td>Biomaterials II</td>
</tr>
<tr>
<td>BME 6923</td>
<td>Tissue Engineering</td>
</tr>
<tr>
<td>BME 6933</td>
<td>Tissue-Biomechanics Interactions</td>
</tr>
<tr>
<td>BME 6943</td>
<td>Biomaterials and Cell Signaling</td>
</tr>
<tr>
<td>BME 6953</td>
<td>Biomaterials for Drug-Delivery/Pharmacology</td>
</tr>
<tr>
<td>BME 6963</td>
<td>Fundamentals to Polymer Science with Select Biomedical Applications</td>
</tr>
<tr>
<td>BME 6973</td>
<td>Current Analytical Tools for Biomaterials Characterizations</td>
</tr>
<tr>
<td>BME 6993</td>
<td>Topics in Biomaterials</td>
</tr>
<tr>
<td>CHE 5263</td>
<td>Advanced Analytical Chemistry</td>
</tr>
<tr>
<td>EE 5243</td>
<td>Topics in Systems and Control</td>
</tr>
<tr>
<td>EE 5263</td>
<td>Topics in Digital Signal Processing and Digital Filtering</td>
</tr>
<tr>
<td>EE 5353</td>
<td>Topics in Multimedia Signal Processing</td>
</tr>
<tr>
<td>EE 6343</td>
<td>Advanced Topics in Systems and Control</td>
</tr>
<tr>
<td>EE 6363</td>
<td>Advanced Topics in Signal Processing</td>
</tr>
<tr>
<td>ME 5013</td>
<td>Topics in Mechanical Engineering</td>
</tr>
<tr>
<td>ME 5243</td>
<td>Advanced Thermodynamics</td>
</tr>
<tr>
<td>ME 5413</td>
<td>Elasticity</td>
</tr>
<tr>
<td>ME 5463</td>
<td>Fracture Mechanics</td>
</tr>
<tr>
<td>ME 5473</td>
<td>Viscoelasticity</td>
</tr>
<tr>
<td>ME 5483</td>
<td>Finite Element Methods</td>
</tr>
<tr>
<td>ME 5613</td>
<td>Advanced Fluid Mechanics</td>
</tr>
<tr>
<td>ME 5653</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td>ME 5713</td>
<td>Mechanical Behavior of Materials</td>
</tr>
<tr>
<td>ME 5743</td>
<td>Composite Materials</td>
</tr>
<tr>
<td>MOT 5163</td>
<td>Management of Technology</td>
</tr>
<tr>
<td>MOT 5243</td>
<td>Essentials of Project and Program Management</td>
</tr>
<tr>
<td>MOT 5253</td>
<td>Starting the High-Tech Firm</td>
</tr>
<tr>
<td>MOT 5313</td>
<td>Emerging Technologies</td>
</tr>
<tr>
<td>MOT 5323</td>
<td>Biotechnology Industry</td>
</tr>
<tr>
<td>STA 5103</td>
<td>Applied Statistics</td>
</tr>
</tbody>
</table>

UTHSCSA Prescribed Elective Courses:
- BIME 5091 Independent Study
- CSBL 5022 Interprofessional Human Gross Anatomy
- CSBL 5095 Experimental Design and Data Analysis
- INTD 5007 Advanced Cell and Molecular Biology
- INTD 5040 Fundamentals of Neuroscience
- INTD 6033 Cell Signaling Mechanisms
- INTD 7074 Medical Product Development
- MICR 5051 Introduction to Immunology
- PHAR 5013 Principles of Pharmacology
- RADI 6016 Physics of Diagnostic Imaging II
- RADI 6051 Statistical Parametric Imaging

D. A minimum of 6 semester credit hours of biomedical engineering Master's Thesis Research is required.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIME 6098</td>
<td>Thesis</td>
</tr>
<tr>
<td>BME 6986</td>
<td>Master's Thesis Research</td>
</tr>
</tbody>
</table>

Total Credit Hours: 32

1 Only one course is needed to satisfy the core requirement.

The entire program of study must be recommended by the student’s Master’s Thesis Advisor, Master’s Thesis Committee, and the COGS and must be submitted to the Dean of the Graduate School for approval. The courses taken by students are intended to focus and support the individual’s mastery of his or her particular area of specialization.

Advancement to Candidacy

The student should seek recommendations from the COGS for advancement to candidacy. The COGS reserves the right to deny recommendation of the student’s admission to Master’s candidacy based on the student’s academics and proposed research. Upon recommendation from the COGS, all students are admitted to candidacy after successfully defending their proposed research, recommended by his/her Master’s Thesis Committee, and approved by the Dean of the Graduate School. Students should also consult the University Master’s Degree Regulations in Chapter 4 of this catalog for the other pertinent requirements.

Thesis Defense

A thesis, which is an original contribution to scholarship, based on independent investigation (graduate research) in the major area, is required of every candidate. The Master’s thesis research will be conducted by the student under the guidance of the Supervising Professor and the advice of the Master’s Thesis Committee. Prior to starting the thesis research, each student will submit a research proposal to the COGS for approval. The thesis will be the responsibility of the student and the Supervising Professor. Registration for thesis credit hours must be for a period of more than one semester. During each semester that a student receives advice and/or assistance from a faculty member or supervision by the Master’s Thesis Committee or uses UTSA.
or UTHSCSA resources, he or she will be required to enroll for credit in the appropriate Master’s degree course. The form and format of the thesis should follow the guidelines and rules already in effect at UTSA or UTHSCSA.

Composition of the Master’s Thesis Committee
The Master’s Thesis Committee is made up of at least four members. The committee should consist of the Supervising Professor, one BME Graduate Faculty member from UTSA, one BME Graduate Faculty member from UTHSCSA, and one external member. The student’s thesis proposal and the proposed composition of the Master’s Thesis Committee will be evaluated and approved by the COGS.

Final Oral Examination (Defense of Thesis)
A satisfactory final oral examination is required for the approval of a thesis. Acceptance of the thesis will be contingent upon approval of the respective Master’s Thesis Committee. The thesis defense consists of a seminar presentation by the candidate to the general public. A closed door examination by the Master’s Thesis Committee follows and covers the general field of the thesis, and other parts of the student’s program as determined by the respective committee. Members of the Master’s Thesis Committee must be satisfied that the student has:

1. Completed the research approved by the Master’s Thesis Committee.
2. Passed all examinations required by the COGS, including the successful defense of the thesis.
3. Completed the required coursework.
4. Completed a thesis that is an independent investigation in the biomedical engineering field and constitutes a contribution to the respective discipline.

Upon successful completion of the aforementioned requirements, the Master’s Thesis Committee members will sign the approval forms for the Graduate School of Biomedical Sciences at the UTHSCSA or to the Graduate School at UTSA that the Master’s degree be awarded.

Degree Requirements and Program of Study – Nonthesis Option

The Nonthesis Option is not offered to new incoming students. All students enrolled in the Nonthesis Option will require approval from the Program Director and the Graduate Advisor of Record. Typically, a Master’s degree (Nonthesis Option) program of study will consist of at least 36 semester credit hours beyond the bachelor’s degree. Undergraduate courses, general education courses, and prerequisites for graduate courses cannot be counted toward this total. For transferring students, course credit allowed for transfer will be decided on a case-by-case basis by the Biomedical Engineering Committee on Graduate Studies (COGS). If recommended by the COGS, the request will then be submitted to the Dean of the Graduate School for approval. Since this is a joint graduate program, some courses are offered at The University of Texas Health Science Center at San Antonio (UTHSCSA). To enroll in UTHSCSA courses (UTHSCSA Catalog (http://catalog.uthscsa.edu)), students must register through the UTHSCSA Web site (http://www.uthscsa.edu). Any questions concerning registration at UTHSCSA should be directed to the BME Program Office at UTHSCSA. The required curriculum for all BME students in the Nonthesis Option is as follows:

A. Core Courses: 18

- BME 6033 BME Engineering Analysis
- BME 6131 Biomedical Project
- BME 6703 Biomedical Imaging
- BME 6803 Experimental Biomechanics
- BME 6903 Biomaterials
- BME 6961 Comprehensive Examination

Required Core Courses offered at UTHSCSA: (1 Only one of these courses is needed for the core requirement.)

- BIME 6004 Biology for Bioengineers
- BIME 6006 Physiology for BME
- TSCI 5070 Responsible Conduct of Patient-Oriented Clinical Research

B. Research seminar 3

- BME 6011 (or BIME 6090 at UTHSCSA) is required for three semesters, in order to satisfy the requirements for the Master’s degree program in Biomedical Engineering.

C. A minimum of 15 semester credit hours of Elective Courses selected from the list of electives for the Thesis Option above. Courses from this list may be taken with the approval of the Program Director, Supervising Professor, and course instructor.

Total Credit Hours 36

1 Students are required to take only one of these courses to satisfy the core requirements.

Doctor of Philosophy Degree in Biomedical Engineering

A Doctor of Philosophy degree in Biomedical Engineering (BME) at The University of Texas at San Antonio (UTSA) is offered through a joint graduate program with The University of Texas Health Science Center at San Antonio (UTHSCSA). A matrix of academic tracks is offered based on segments of biomedical engineering and/or areas of clinical emphasis. Specifically, the program has emphases in the following areas: biomaterials, biomechanics, and bioimaging. The biological areas covered are orthopedics/dental tissues, cardiovascular systems, and neural systems. The Ph.D. in Biomedical Engineering will be awarded to candidates who have displayed an in-depth understanding of the concepts that are necessary for critically judging the scientific literature, for formulating novel hypotheses, designing experimental protocols to test the hypotheses, interpreting their results and demonstrating their ability to make an original contribution to knowledge in the biomedical field.

The regulations for this degree comply with the general University regulations (refer to Chapter 2, General Academic Regulations, and Chapter 5, Doctoral Degree Regulations).

Admission Requirements

Students who hold an undergraduate or master’s degree may apply to the program. The minimum requirements for admission to the Doctor of Philosophy in Biomedical Engineering degree program are described below. Note that admission is competitive and satisfying these requirements does not guarantee admission.

- Applicants must have a grade point average of 3.0 or better in the last 60 semester credit hours of coursework with a major in a recognized science or engineering discipline. All students should have had sufficient background in engineering, chemistry, biology, and physics...
prior to being admitted to the program. It is expected that these students will have B.S. degrees with emphasis in either engineering, physical science, or biological science disciplines. All students are required to have completed at least one year of engineering physics, chemistry, biology, and mathematics (up to Differential Equations I or Applied Engineering Analysis I). Students with deficiencies in the above courses will be required to satisfactorily complete selected courses as a condition of acceptance.

- Applicants with a master’s degree must have a grade point average of 3.0 or better in their master’s degree program. Applicants with a Master’s degree in Biomedical Engineering or in a related field may apply a maximum of 30 semester credit hours of previously earned graduate credit (except research and thesis hours) toward their doctoral degree. The Committee on Graduate Studies (COGS) will evaluate each student’s transcript and credit will be recommended for transfer on a course-by-course basis to satisfy the formal coursework requirements of the doctoral degree.
- A satisfactory score, as evaluated by the Admissions Committee for Biomedical Engineering, is required on the Graduate Record Examination (GRE). Students whose native language is not English must achieve a minimum score of 550 on the Test of English as a Foreign Language (TOEFL) paper version or 79 on the Internet version. The applicant’s performance on a standardized test will be considered in addition to other criteria, for admission or competitive scholarship awards and will not be used as the sole criterion for consideration of an applicant.
- Three letters of recommendation attesting to the applicant’s readiness for doctoral study.
- A complete application includes the application form, official transcripts, letters of recommendation, GRE scores, a résumé, and a statement of the applicant’s research experience, interests, and goals. TOEFL scores are required for those applicants whose native language is not English.

Degree Requirements and Program of Study

Typically, a doctoral program of study will consist of at least 82 semester credit hours for students with a bachelor’s degree. Undergraduate courses, general education courses, and prerequisites for graduate courses cannot be counted toward this total. For students with a master’s degree, course credit allowed for transfer will be decided on a case-by-case basis by the Biomedical Engineering COGS. If recommended by the COGS, the request will then be submitted to the Dean of the Graduate School for approval. Since this is a joint graduate program, some courses are offered at The University of Texas Health Science Center at San Antonio (UTHSCSA). To enroll in UTHSCSA courses (UTHSCSA Catalog (http://catalog.uthscsa.edu)), students must register through the UTHSCSA Web site (http://www.uthscsa.edu). Any questions concerning registration at UTHSCSA should be directed to the BME Program Office at UTHSCSA.

Students with a M.S. degree in Biomedical Engineering will be reviewed on a case-by-case basis. All other students who have obtained a Master of Science degree in Biomedical Engineering from UTSA are required to complete the following courses:

- CSBL 5095 Experimental Design and Data Analysis (at UTHSCSA)
- One prescribed BME elective
- Course requirements in Sections B and D of doctoral program

Students will be required to complete a minimum of 82 hours for students matriculating into the doctoral program with a B.S. degree. The minimum required curriculum for all students is as follows:

A. Core Courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 6033</td>
<td>BME Engineering Analysis 1</td>
</tr>
<tr>
<td>BME 6203</td>
<td>Physiology for Engineers 1, 2</td>
</tr>
<tr>
<td>BME 6703</td>
<td>Biomedical Imaging 1, 3</td>
</tr>
<tr>
<td>BME 6803</td>
<td>Experimental Biomechanics 1</td>
</tr>
<tr>
<td>BME 6903</td>
<td>Biomaterials 1</td>
</tr>
</tbody>
</table>

Required Core Courses offered at UTHSCSA:

- BME 6004 Biology for Bioengineers 1, 2
- BIME 6006 Physiology for BME 1, 2
- CSBL 5095 Experimental Design and Data Analysis
- TSCI 5070 Responsible Conduct of Patient-Oriented Clinical Research
- RADI 5015 Physics of Diagnostic Imaging 1, 3

[1] Select any four (4) courses to satisfy core requirements.
[2] Only one of these courses may be counted toward the core requirements.
[3] Only one of these courses may be counted toward the core requirements.

B. Research seminar

- BME 6011 (at UTSA) or BIME 6090 (at UTHSCSA) must be registered for during each Fall and Spring semester while in the BME Doctoral program. With the approval of the Program Director, Ph.D. students are not required to register for the seminar if they are in their fifth year of the program as a full-time student and have registered for the Fall and Spring semester seminars during the preceding four years.

C. A minimum of 9 semester credit hours of Prescribed Elective Courses selected from the list below. Courses from this list may be taken with the approval of the Program Director, Supervising Professor, and course instructor.

- UTSA Prescribed Elective Courses:
 - BIO 5433 Neuronephysiology
 - BIO 5483 Computational Neuroscience
 - BIO 5503 Sensory Physiology
 - BIME 6043 Critical Thinking and Writing for BME
 - BME 6053 Independent Study in Biomedical Engineering (or BME 6051, BME 6052)
 - BME 6093 Topics in Biomedical Engineering
 - BME 6111 Introduction to Clinical Practices
 - BME 6123 Medical Device Design
 - BME 6143 Biomedical Device Development
 - BME 6213 Cellular Engineering
 - BME 6223 Transport Processes in Biological Systems
 - BME 6233 Cardiovascular Bioengineering
 - BME 6243 Mechanobiology
 - BME 6253 Bioheat Transfer
 - BME 6313 Computational Bioengineering and Biomedicine
 - BME 6323 Bioinformatics
 - BME 6333 Stochastic Modeling in Bioengineering
UTHSCSA Prescribed Elective Courses:

- STA 5103
- ME 5743
- ME 5713
- ME 5653
- ME 5613
- ME 5483
- ME 5473
- ME 5463
- ME 5413
- ME 5243
- ME 5013
- EE 6363
- EE 6343
- EE 5353
- EE 5263
- CHE 5263
- BME 6993
- BME 6973
- BME 6933
- BME 6923
- BME 6913
- BME 6893
- BME 6892
- BME 6891
- BME 6883
- BME 6843
- BME 6823
- BME 6793
- BME 6783
- BME 6773
- BME 6763
- BME 6753
- BME 6743
- BME 6733
- BME 6723
- BME 6623
- BME 6523
- BME 6353
- BME 6343
- BME 6323
- BME 6223
- BME 6213
- BME 6123
- BME 6093
- BME 6083
- BME 6073
- BME 6063
- BME 6053
- BME 6043
- BME 6033
- BME 6023
- BME 6013
- BIME 6993
- BIME 6973
- BIME 6963
- BIME 6953
- BIME 6943
- BIME 6933
- BIME 6923
- BIME 6913
- BIME 6893
- BIME 6873
- BIME 6863
- BIME 6853
- BIME 6843
- BIME 6823
- BIME 6793
- BIME 6753
- BIME 6743
- BIME 6733
- BIME 6723
- BIME 6523
- BIME 6363
- BIME 6353
- BIME 6343
- BIME 6323
- BIME 6223
- BIME 6213
- BIME 6123
- MICR 5051
- PHAR 5013
- PHAR 5014
- RADI 6016
- RADI 6051

Department of Biomedical Engineering

F. Electives

The remainder of the required hours must be BME approved graduate level electives. (34-36 semester credit hours).

Students in the program must complete at least 82 semester credit hours for graduation. The entire program of study must be recommended by the student's Dissertation Advisor, Dissertation Committee, and COGS and must be submitted to the Dean of the Graduate School for final approval. The courses taken by students are intended to focus and support the individual's mastery of his or her particular area of specialization.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 5091</td>
<td>Independent Study</td>
</tr>
<tr>
<td>CSBL 5022</td>
<td>Interprofessional Human Gross Anatomy</td>
</tr>
<tr>
<td>IBMS 5000</td>
<td>Fundamentals of Biomedical Science</td>
</tr>
<tr>
<td>INTD 5007</td>
<td>Advanced Cell and Molecular Biology</td>
</tr>
<tr>
<td>INTD 5040</td>
<td>Fundamentals of Neuroscience I</td>
</tr>
<tr>
<td>INTD 6033</td>
<td>Cell Signaling Mechanisms</td>
</tr>
<tr>
<td>INTD 7074</td>
<td>Medical Product Development</td>
</tr>
</tbody>
</table>

Advancement to Candidacy

All students seeking a doctoral degree must be admitted to candidacy after passing a doctoral qualifying examination. Students should consult the University Doctoral Degree Regulations in Chapter 5 of this catalog for the other pertinent requirements.

Satisfactory Performance on the Doctoral Qualifying Examination for Admission to Candidacy

The qualifying examination will be administered before the student commences the chosen dissertation research. This examination will be comprehensive in nature and may be written, oral, or both. Topics covered will include not only information provided in courses taken by the student but also basic knowledge necessary for research in the student's chosen area of study. The Committee on Graduate Studies (COGS) will determine the format of the examination and the composition of the Qualifying Examination Committee (QEC), with the provision that BME faculty from both UTSA and UTHSCSA will be included. The QEC will
administer the examination, evaluate the student’s performance, and report its judgment to the Committee on Graduate Studies. A student is allowed to take the qualifying examination twice. Admission to candidacy will be contingent on passing the qualifying examination. Students who do not pass the qualifying examination may be accommodated with a terminal Master’s degree after completing additional prescribed courses and/or research approved by the Supervising Professor, Program Director and the COGS.

Doctoral Dissertation

A dissertation, which is an original contribution to scholarship, based on independent investigation (doctoral research) in the major area, is required of every candidate. The doctoral research will be conducted by the student under the guidance of the Supervising Professor and the advice of the Dissertation Committee. Prior to starting the doctoral research, each student will submit a dissertation proposal to the COGS for approval. The doctoral dissertation will be the responsibility of the student and the Supervising Professor. Registration for dissertation credit hours must be for a period of more than one semester. During each semester that a student receives advice and/or assistance from a faculty member or supervision by the Dissertation Committee or uses UTSA or UTHSCSA resources, he or she will be required to enroll for credit in the appropriate dissertation course. The form and format of the dissertation should follow the guidelines and rules already in effect at UTSA or UTHSCSA.

Composition of the Dissertation Committee

The Dissertation Committee is made up of at least five members. The committee should consist of the Supervising Professor, one BME Graduate Faculty member from UTSA, one BME Graduate Faculty member from UTHSCSA, one member of the graduate faculty outside of the BME Graduate Faculty from either UTSA or UTHSCSA, and one member from outside both institutions. In addition, there is a minimum of 50 percent dissertation committee membership from UTSA for students with a Supervising Professor from UTSA. The student’s dissertation proposal and the proposed composition of the Dissertation Committee will be evaluated and approved by the COGS.

Final Oral Examination (Defense of Dissertation)

A satisfactory final oral examination is required for the approval of a dissertation. Acceptance of the dissertation will be contingent upon approval of the respective Dissertation Committee.

The dissertation defense will consist of a seminar presentation by the candidate to the general public. A closed door examination by the Dissertation Committee follows and covers the general field of the candidate to the general public. A closed door examination by the Dissertation Committee follows and covers the general field of the dissertation, and other parts of the student’s program as determined by the respective committee. Members of the Dissertation Committee must be satisfied that the student has:

1. Completed the research approved by the Dissertation Committee.
2. Passed all examinations required by the COGS, including the successful defense of the dissertation.
3. Completed the required coursework.
4. Completed a dissertation that is an independent investigation in the biomedical engineering field and constitutes a contribution to the respective discipline.
5. Submitted an abstract for publication in Dissertation Abstracts International that meets with the approval of University requirements.

Upon successful completion of the aforementioned requirements, the Dissertation Committee members will sign the approval forms for the doctoral dissertation and make an official recommendation to the Graduate School of Biomedical Sciences at the UTHSCSA or to the Graduate School at UTSA that the Doctoral degree be awarded.

Students should note that the above is a summary of the requirements for the Doctoral degree and are advised to consult the University (UTSA) Doctoral Degree Regulations as well as the BME Student Handbook which contains details specific to the UTSA/UTHSCSA Joint Graduate Program in Biomedical Engineering.

Biomedical Engineering (BME) Courses

BME 6011. Research Seminar. (1-0) 1 Credit Hour.

Prerequisites: Graduate student standing; consent of the instructor and the Graduate Advisor of Record. The seminar coordinator may require students to present their research. May be repeated for credit. The grade report for the course is either “CR” (satisfactory performance) or “NC” (unsatisfactory performance). (Formerly BME 5011 and BME 6991. Same as BIME 6090 at UTHSCSA).

BME 6021. Supervised Teaching. (0-0) 1 Credit Hour.

Prerequisites: Doctoral student standing; consent of the instructor and the Graduate Advisor of Record. Supervised teaching of undergraduate or graduate students will be required for at least one semester. Students may be required to lecture at undergraduate courses or graduate courses in the field of their expertise. Students will work with the instructor of the course or with their research supervisor on the number of classes to be taught. (Same as BIME 6071 at UTHSCSA).

BME 6022. Supervised Teaching. (0-0) 2 Credit Hours.

Prerequisites: Doctoral student standing; consent of the instructor and the Graduate Advisor of Record. Supervised teaching of undergraduate or graduate students will be required for at least one semester. Students may be required to lecture at undergraduate courses or graduate courses in the field of their expertise. Students will work with the instructor of the course or with their research supervisor on the number of classes to be taught. (Same as BIME 6071 at UTHSCSA).

BME 6023. Supervised Teaching. (0-0) 3 Credit Hours.

Prerequisites: Doctoral student standing; consent of the instructor and the Graduate Advisor of Record. Supervised teaching of undergraduate or graduate students will be required for at least one semester. Students may be required to lecture at undergraduate courses or graduate courses in the field of their expertise. Students will work with the instructor of the course or with their research supervisor on the number of classes to be taught. (Same as BIME 6071 at UTHSCSA).

BME 6033. BME Engineering Analysis. (3-0) 3 Credit Hours.

Prerequisite: Graduate standing in engineering or consent of the instructor. This course is designed to introduce students to advanced mathematical and numerical methods necessary to solve problems frequently encountered in biomedical engineering. Topics covered include vector differential and integral calculus, linear algebraic equations, and ordinary and partial differential equations. (Same as EGR 6013. Same as BME 6093 offered in Fall 2007. Credit can be earned for only one of the following: BME 6033, BME 6093 taken Fall 2007, or EGR 6013).
BME 6043. Critical Thinking and Writing for BME. (3-0) 3 Credit Hours.
Prerequisites: Doctoral students who are either taking their qualifying examinations or have been admitted to candidacy; consent of the instructor and of the Graduate Advisor of Record. This course introduces students to grant applications and manuscript writing, and provides the opportunity to learn through writing and critiquing research proposals, manuscripts, abstracts, and scientific presentations.

BME 6051. Independent Study in Biomedical Engineering. (0-0) 1 Credit Hour.
Prerequisites: Graduate standing; consent of the instructor and of the Graduate Advisor of Record. Independent reading, research, discussion, and/or writing under the direction of a faculty member. For students needing specialized work not normally or not often available as part of regular course offerings. May be repeated for credit on a different topic of study, but no more than 6 credit hours, regardless of discipline, will apply toward the degree.

BME 6052. Independent Study in Biomedical Engineering. (0-0) 2 Credit Hours.
Prerequisites: Graduate standing; consent of the instructor and of the Graduate Advisor of Record. Independent reading, research, discussion, and/or writing under the direction of a faculty member. For students needing specialized work not normally or not often available as part of regular course offerings. May be repeated for credit on a different topic of study, but no more than 6 credit hours, regardless of discipline, will apply toward the degree.

BME 6053. Independent Study in Biomedical Engineering. (0-0) 3 Credit Hours.
Prerequisites: Graduate standing; consent of the instructor and of the Graduate Advisor of Record. Independent reading, research, discussion, and/or writing under the direction of a faculty member. For students needing specialized work not normally or not often available as part of regular course offerings. May be repeated for credit on a different topic of study, but no more than 6 credit hours, regardless of discipline, will apply toward the degree.

BME 6056. Introduction to Scientific Computing and Visualization. (3-0) 3 Credit Hours.
Prerequisites: Graduate standing; consent of the instructor. This is an introductory course covering the basic concepts and tools of scientific computing and visualization. It will cover basic UNIX operations (shell scripts and editors), UNIX tools (grep, awk, sed), basic visualization concepts and software tools (ParaView and Visit). It will also cover parallel programming using Fortran/C/C++ with Message Passing Interface (MPI) and public domain libraries. (Credit can be earned for only one of the following: BME 6063, ME 4953 or ME 5013).

BME 6073. Professional Science Master’s Practicum. (0-0) 3 Credit Hours.
Prerequisites: Graduate standing and consent of the Program Director. An internship in a Biomedical Engineering company. Students must have completed all required core courses and electives, and be in the writing phase of their thesis. May not be repeated for credit.

BME 6093. Topics in Biomedical Engineering. (3-0) 3 Credit Hours.
Prerequisites: Graduate standing; consent of the instructor and of the Graduate Advisor of Record. May be repeated for credit on a different topic of study.

BME 6103. Biology for Bioengineers. (3-0) 3 Credit Hours.
Prerequisites: Graduate standing; consent of the instructor and of the Graduate Advisor of Record. This course provides a broad background in biological concepts with specific attention given to biological processes important to bioengineering. Topics may include biochemistry, genetics, molecular biology, cell biology, and physiology. (Same as BIME 6004 at UTHSCSA. Credit cannot be earned for both BME 6103 and BIME 6004).

BME 6111. Introduction to Clinical Practices. (1-0) 1 Credit Hour.
Prerequisites: Graduate standing; consent of the instructor and of the Graduate Advisor of Record. This course will provide an introduction to clinical medicine for graduate biomedical engineering students. It will provide the opportunity for the students to gain a working knowledge of engineering aspects as it relates to clinical practices. (Same as BIME 6004 at UTHSCSA. Credit cannot be earned for both BME 6103 and BIME 6004).

BME 6123. Medical Device Design. (3-0) 3 Credit Hours.
Prerequisites: Graduate standing; consent of the instructor and of the Graduate Advisor of Record. This course will educate students about current biomedical technologies and product development. Topics covered will include ideation, concept development, design methodologies, business plan basics, regulatory concepts for medical devices and intellectual property management.

BME 6131. Biomedical Project. (0-0) 1 Credit Hour.
Prerequisites: Graduate standing; consent of the instructor and of the Graduate Advisor of Record and concurrent enrollment in BME 6143. This project course will be offered to nonthesis students as an alternative to the comprehensive examination and will involve the design and development of a biomedical device or instrument. This course requires the final presentation of a prototype at the end of the semester and cannot be repeated for credit. The grade report for the course is either “CR” (satisfactory performance in Biomedical Project) or “NC” (unsatisfactory performance in Biomedical Project). (Credit cannot be earned for both BME 6131 and BIME 6961).

BME 6143. Biomedical Device Development. (3-0) 3 Credit Hours.
Prerequisites: Graduate standing; consent of the instructor and of the Graduate Advisor of Record and BME 6123. This course involves the development of project proposals, testing of the design project and presentation of conceptual designs and a final prototype. Industrial collaboration and/or faculty sponsorship of these projects is encouraged.

BME 6203. Physiology for Engineers. (3-0) 3 Credit Hours.
Prerequisite: Consent of the instructor or completion of BIME 6004 (UTHSCSA). Designed to provide students with the essential graduate-level background for applications and practices of biomedical engineering. Integration of the nervous, skeletal, muscle, cardiovascular, and other systems from the sub-cellular to the whole-organism level will be emphasized.

BME 6213. Cellular Engineering. (3-0) 3 Credit Hours.
Prerequisites: Consent of the instructor and completion of BIME 6004 (UTHSCSA) or BME 6203. This course will focus on the use of engineering skills and principles in the analysis and design of cellular function including protein engineering, enzyme kinetics, drug design, receptor-ligand interactions, cell signaling, metabolism, growth, adhesion and migration.
BME 6223. Transport Processes in Biological Systems. (3-0) 3 Credit Hours.
Prerequisites: Consent of the instructor and completion of BIME 6004 (UTHSCSA) or BME 6203. This course will introduce the concepts of quantitative modeling of biological systems, particularly with respect to mass, momentum and energy transport, and reaction kinetics. Areas of study will include the use of conservation laws in quantifying cardiopulmonary, renal, and thermal systems of the human physiology, and also apply these principles in developing artificial and extracorporeal devices, drug delivery and pharmacokinetic analysis.

BME 6233. Cardiovascular Bioengineering. (3-0) 3 Credit Hours.
Prerequisites: BME 6203, and BME 6033 or consent of the instructor. This course introduces the bioengineering principles applied to the understanding and modeling of the cardiovascular system. Topics covered include anatomy of the human cardiovascular system; comparative anatomy; allometric scaling principles; cardiovascular molecular and cell biology; overview of continuum mechanics; form and function of blood, blood vessels, and the heart from an engineering perspective; normal, diseased and engineered replacement tissues and medical devices.

BME 6243. Mechanobiology. (3-0) 3 Credit Hours.
Prerequisites: BME 6803 and BIME 6004 (UTHSCSA) or BME 6203. The course will explore the role of mechanical forces in modulating molecular and cellular responses and signal transduction in cardiovascular, pulmonary, renal, skeletal and muscular systems, and impact in health and disease including stem cell differentiation and microgravity.

BME 6253. Bioheat Transfer. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing in engineering or consent of the instructor. Principles and applications of heat transfer in soft tissue. Topics may include fundamental conservation laws and governing equations of heat transfer, coupling of fluid and mass transport, and thermal activated nanoparticle transvascular transport. (Same as ME 6253. Credit cannot be earned for both BME 6253 and ME 6253).

BME 6313. Computational Bioengineering and Biomedicine. (3-0) 3 Credit Hours.
Prerequisite: BME 6033 or consent of the instructor. The objective of this course is to provide both engineering and medical students an introductory knowledge and skills of mathematical modeling and computer simulation, particularly in bioengineering. The course will consist of three parts: theoretical background, computational methods, and practical applications. (Same as ME 6873. Credit cannot be earned for both BME 6313 and ME 6873.).

BME 6323. Bioinformatics. (3-0) 3 Credit Hours.
Prerequisites: Graduate standing and consent of the instructor. This course is an introduction to algorithms and methods in bioinformatics, with special emphasis on computational molecular biology. Areas of study include fundamental topics such as sequence alignment, gene prediction, RNA secondary structure prediction, phylogenetic inference, gene regulation, microarray data analysis, and advanced topics such as biological network analysis and next-generation sequencing data analysis. (Same as CS 5263. Credit cannot be earned for both BME 6323 and CS 5263).

BME 6333. Stochastic Modeling in Bioengineering. (3-0) 3 Credit Hours.
Prerequisite: Consent of the instructor. This course deals with development and application of probabilistic and uncertainty quantification methods in engineering. In particular, it covers random variable definitions, probability distributions, distribution selection, functions of random variables, numerical methods including Monte Carlo sampling, First Order Reliability Methods, component and systems reliability, and decision process under uncertainty. (Same as ME 5543. Credit cannot be earned for both BME 6333 and ME 5543).

BME 6343. Statistical Pattern Recognition and Data Mining in Biomedical Engineering. (3-0) 3 Credit Hours.
Prerequisites: BME 6333 and consent of the instructor. This course introduces the fundamental theories and algorithms of statistical classification, regression, and clustering including Bayesian networks, k-nearest neighbor classifier, linear classifier, decision tree, kernel approach for classification and regression, k-means clustering, and hierarchical clustering. Applications to, among others, modeling and analysis gene regulation, cancer prognosis and diagnosis, and gene functions prediction will be discussed in detail.

BME 6353. Computational Methods in Mass Spectrometry. (3-0) 3 Credit Hours.
Prerequisites: Completion of BME 6333 and consent of the instructor. This course will introduce basic computational processing methods of Mass Spectrometry (MS) for protein quantification and identification. Background topics includes protein, proteome, and proteomics; protein separation; protein digestion; peptide separation using HPLC; and introduction to Mass Spectrometry. The course will focus on computational methods for protein identification and characterization by MS; tandem MS or MS/MS analysis; de novo sequencing and database searching; and quantitative proteomics.

BME 6363. Multiscale Computational Modeling of Biomedical Systems. (3-0) 3 Credit Hours.
Prerequisites: EE 3413 or EE 5143 and consent of the instructor. This course is an introduction to the mathematical modeling, simulation and analysis of biological systems focusing on the cardiovascular system. The proposed topics include: fundamental physical/biochemistry laws to model a biological system, current mathematical modeling methods, introduction to the cardiovascular system with respect to LV functions, cellular functions, and gene expressions, applications of the modeling methods to the cardiovascular system, simulation tools for biological systems, and stability analysis and parameter sensitivity analysis of mathematical models for biological systems. (Same as EE 5243 Topic 1. Credit cannot be earned for BME 6363 and EE 5243 on the same topic).

BME 6523. Biological Laboratory Techniques in Biomedical Engineering. (3-0) 3 Credit Hours.
Prerequisites: Consent of the instructor and completion of BIME 6004 (UTHSCSA) or BME 6203. Emphasis for this course will be on optical and fluorescence microscopy of mammalian cells and tissues using sterile technique. Common cell-biomaterial characterization techniques will be performed including live/dead analysis, apoptosis, and quantification of cell signaling markers using immunological and advanced fluorescence assays with practical applications to biomaterial design.
BME 6703. Biomedical Imaging. (3-0) 3 Credit Hours.
Prerequisite: Consent of the BME Program Director. This course will examine, from a systems perspective, the techniques used in a variety of medical imaging modalities, which include X-ray imaging, computed tomography (CT), magnetic resonance imaging (MRI), nuclear medicine (PET), ultrasound imaging, optical imaging and photoacoustic imaging. The fundamental principles and engineering underlying each imaging modality will be discussed and a performance analysis of each system will be examined. With approval from the BME Program Director, credit for this course can be counted towards satisfying the imaging core course for Ph.D. students. (Credit can be earned for only one of the following: BME 6703 or RADI 5015 at UTHSCSA.)

BME 6723. Bioinstrumentations. (3-0) 3 Credit Hours.
Prerequisite: Consent of the instructor. This course will cover fundamental principles of bioinstrumentation used in clinical and research measurements. Topics include: principles of transducer operation, amplifiers and signal processing, recording and display. Overview of specific examples in optical sensors, biological sensors, MRI, ultrasound, pacemakers and defibrillators.

BME 6733. Microfabrication and Application. (3-0) 3 Credit Hours.
Prerequisite: Consent of the instructor. This course describes the science of miniaturization which is essential for nanotechnology development. Microfabrication techniques for micro-electro-mechanical systems (MEMS), bioMEMS, microfluidics, and nanomaterials and their applications in biomedical research will be covered.

BME 6743. Biophotonics. (3-0) 3 Credit Hours.
Prerequisite: Consent of the instructor. This course describes the fundamental principles of biophotonics and their wide range of applications in biomedical research. Topics will include fundamentals of light interactions with molecules, cells, and tissues, optical biosensing (fiber-optic biosensors, evanescent wave biosensors, surface plasmon resonance biosensors), optical imaging (transmission microscopy, fluorescence microscopy, confocal scanning microscopy, multiphoton microscopy, fluorescence lifetime imaging microscopy), flow cytometry, photodynamic therapy, laser tweezers and laser scissors, and nanotechnology for biophotonics.

BME 6753. Biosensors: Fundamentals and Applications. (3-0) 3 Credit Hours.
Prerequisite: Consent of the instructor. This course will cover biosensing basics and in-depth view of device design and performance analysis. Topics include optical, electrochemical, acoustic, piezoelectric, and nanobiosensors. Emphasized applications in biomedical, environmental, and homeland security areas are discussed.

BME 6793. Topics in Image and Signal Processing. (3-0) 3 Credit Hours.
Prerequisite: Consent of the instructor. May be repeated for credit on a different topic of study.

BME 6803. Experimental Biomechanics. (3-0) 3 Credit Hours.
Prerequisites: BME 6033 and graduate standing. Fundamental applications of engineering mechanics in studying and modeling fluid flow, tissues, organs, and the whole human body will be discussed. This course includes a laboratory. (Formerly BME 6833. Same as ME 6833. Credit can be earned for only one of the following: BME 6803, BME 6833, ME 5833, or ME 6833.) (Formerly titled “Biomechanics I”).

BME 6823. Advanced Biomechanics. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing. This course covers biomechanics of biological tissue deformation and their constitutive equations. Topics may include elasticity, viscoelasticity, deformation, stress analysis, strain measurement, stress and strain in organs. Tissues covered may include heart, blood vessels, cartilage, and bone. (Formerly titled “Biomechanics II”).

BME 6843. Tissue Mechanics. (3-0) 3 Credit Hours.
Prerequisite: BME 6803 or ME 3663 or consent of the instructor. Topics may include biomechanics characterization, modeling, and properties of regenerating tissues ranging from bone, cartilage, tendons, ligaments, skin, adipose tissue, nerves, bladder, eye, and pulmonary and cardiovascular tissues.

BME 6863. Mechanical Behavior of Living Tissues. (3-0) 3 Credit Hours.
Prerequisite: Consent of the instructor. Stress-strain relationships, viscoelasticity, mechanical properties, and mechanical modeling of collagenous and mineralized human tissues will be addressed. (Formerly BME 6513. Credit cannot be earned for both BME 6863 and BME 6513).

BME 6873. Biofluid Mechanics. (3-0) 3 Credit Hours.
Prerequisite: BME 6803 or ME 3663 or consent of the instructor. This course is an introduction to the fluid dynamics concepts necessary to design and perform research in physiological and biofluid mechanics, with a special emphasis in the quantitative understanding and fundamental engineering concepts of the human systemic and pulmonary circulation. Computational and experimental techniques will be studied with hands-on research projects based on student interest.

BME 6893. Topics in Biomechanics. (3-0) 3 Credit Hours.
Prerequisite: Consent of the instructor. May be repeated for credit on a different topic of study. (Same as ME 6893. Credit cannot be earned for both BME 6893 and ME 6893 when the topic is the same).

BME 6903. Biomaterials. (3-0) 3 Credit Hours.
Prerequisite: Consent of the instructor. Fundamentals of biomaterials science and engineering principles and concepts in repairing, replacing, and protecting human tissues and organs will be discussed. (Formerly BME 5903 and BME 6813. Same as ME 6813. Credit can be earned for only one of the following: BME 5903, BME 6903, BME 6813, ME 5813 or ME 6813).

BME 6913. Biomaterials II. (3-0) 3 Credit Hours.
Prerequisites: BME 6903 and consent of the instructor. Application of biomaterials in medicine and dentistry will be emphasized.

BME 6923. Tissue Engineering. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing. This course is an introduction to the principles and current practice of tissue engineering endeavors. Strategies for choosing and using mammalian cells and scaffold biomaterials as well as select chemical and biophysical stimuli in order to obtain neotissue formation are reviewed in detail. Case studies are discussed to illustrate successful tissue engineering solutions of clinical problems pertinent to tissue regeneration. (Formerly BME 5923 and BME 6853. Credit can be earned for only one of the following: BME 5923, BME 6853, or BME 6923).

BME 6933. Tissue-Biomaterials Interactions. (3-0) 3 Credit Hours.
Prerequisite: Graduate standing. This course is an introduction to biocompatibility with special emphasis on the interaction of proteins, cells and tissues with biomaterials. Blood-material interactions are reviewed in detail. Case studies of implants are discussed to illustrate biomaterial selection as a key aspect to successful design of implant materials and prosthetic devices.
BME 6943. Biomaterials and Cell Signaling. (2-3) 3 Credit Hours. Prerequisite: Graduate standing. Develop current understanding of topics in cell receptors and signaling mechanisms with application for biomaterial design. Focus will emphasize receptor-ligand communication, methods of identification and quantification, and pathways involved for cell to material stress response.

BME 6953. Biomaterials for Drug-Delivery/Pharmacology. (2-3) 3 Credit Hours. Prerequisite: Graduate standing. Provides conceptual understanding of therapeutic agents used to regulate physiological function of cells comprising organ systems with relevance to biomaterials. Interpretation of drug mechanisms at a molecular, cellular and tissue level. Traditional reviews of pharmacodynamics and pharmacokinetics will be addressed with particular application to biomaterial interaction and drug-delivery systems.

BME 6961. Comprehensive Examination. (0-0) 1 Credit Hour. Prerequisite: Approval of the Biomedical Engineering Committee on Graduate Studies to take the Comprehensive Examination. Independent study course for the purpose of taking the Comprehensive Examination for M.S. students in the nonthesis option. May be repeated once if approved by the Biomedical Engineering Committee on Graduate Studies and if the student received an “unsatisfactory performance” on his/her previous attempt on the Comprehensive Examination. Enrollment is required each term in which the Comprehensive Examination is taken if no other courses are being taken that term. The grade report for the course is either “CR” (satisfactory performance on the Comprehensive Examination) or “NC” (unsatisfactory performance on the Comprehensive Examination). (Credit cannot be earned for both BME 6961 and BME 6131).

BME 6963. Fundamentals to Polymer Science with Select Biomedical Applications. (3-0) 3 Credit Hours. Prerequisites: Graduate standing and BME 6903; or consent of the instructor. This course introduces the fundamentals of polymer chemistry, characterization of the chemical and material properties, and determination of the biocompatibility of polymer formulations. Current applications of polymeric biomaterials in diagnostic and therapeutic devices, implants, tissue engineering and regenerative medicine are highlighted and discussed in detail.

BME 6973. Current Analytical Tools for Biomaterials Characterizations. (1-4) 3 Credit Hours. Prerequisites: Graduate standing and BME 6903; or consent of the instructor. This course introduces the fundamentals of biomaterials characterizations and its limitations.

BME 6981. Master’s Thesis Research. (0-0) 1 Credit Hour. Prerequisites: Master’s student standing; consent of the instructor and of the Graduate Advisor of Record. May be repeated for a maximum of 9 credit hours. (Same as BIME 6098 at UTHSCSA).

BME 6982. Master’s Thesis Research. (0-0) 2 Credit Hours. Prerequisites: Master’s student standing; consent of the instructor and of the Graduate Advisor of Record. May be repeated for a maximum of 9 credit hours. (Same as BIME 6098 at UTHSCSA).

BME 6983. Master’s Thesis Research. (0-0) 3 Credit Hours. Prerequisites: Master’s student standing; consent of the instructor and of the Graduate Advisor of Record. May be repeated for a maximum of 9 credit hours. (Same as BIME 6098 at UTHSCSA).

BME 6986. Master’s Thesis Research. (0-0) 6 Credit Hours. Prerequisites: Master’s student standing; consent of the instructor and of the Graduate Advisor of Record. May be repeated for a maximum of 9 credit hours. (Same as BIME 6098 at UTHSCSA).

BME 6993. Topics in Biomaterials. (3-0) 3 Credit Hours. Prerequisite: Consent of the instructor. May be repeated for credit on a different topic of study.

BME 7951. Doctoral Research. (0-0) 1 Credit Hour. Prerequisites: Doctoral student standing; consent of the instructor and of the Graduate Advisor of Record. This course consists of independent, original research under the direction of a faculty advisor. May be repeated for a maximum of 18 credit hours. (Same as BIME 6097 at UTHSCSA).

BME 7952. Doctoral Research. (0-0) 2 Credit Hours. Prerequisites: Doctoral student standing; consent of the instructor and of the Graduate Advisor of Record. This course consists of independent, original research under the direction of a faculty advisor. May be repeated for a maximum of 18 credit hours. (Same as BIME 6097 at UTHSCSA).

BME 7953. Doctoral Research. (0-0) 3 Credit Hours. Prerequisites: Doctoral student standing; consent of the instructor and of the Graduate Advisor of Record. This course consists of independent, original research under the direction of a faculty advisor. May be repeated for a maximum of 18 credit hours. (Same as BIME 6097 at UTHSCSA).

BME 7956. Doctoral Research. (0-0) 6 Credit Hours. Prerequisites: Doctoral student standing; consent of the instructor and of the Graduate Advisor of Record. This course consists of independent, original research under the direction of a faculty advisor. May be repeated for a maximum of 18 credit hours. (Same as BIME 6097 at UTHSCSA).

BME 7991. Doctoral Dissertation. (0-0) 1 Credit Hour. Prerequisites: Admission to Doctoral candidacy; consent of the Graduate Advisor of Record and Dissertation Advisor. May be repeated for a maximum of 18 credit hours. (Same at BIME 7099 at UTHSCSA).

BME 7992. Doctoral Dissertation. (0-0) 2 Credit Hours. Prerequisites: Admission to Doctoral candidacy; consent of the Graduate Advisor of Record and Dissertation Advisor. May be repeated for a maximum of 18 credit hours. (Same at BIME 7099 at UTHSCSA).

BME 7993. Doctoral Dissertation. (0-0) 3 Credit Hours. Prerequisites: Admission to Doctoral candidacy; consent of the Graduate Advisor of Record and Dissertation Advisor. May be repeated for a maximum of 18 credit hours. (Same at BIME 7099 at UTHSCSA).

BME 7996. Doctoral Dissertation. (0-0) 6 Credit Hours. Prerequisites: Admission to Doctoral candidacy; consent of the Graduate Advisor of Record and Dissertation Advisor. May be repeated for a maximum of 18 credit hours. (Same at BIME 7099 at UTHSCSA).